Cargando…
Quantifying the impact of pesticides on learning and memory in bees
1. Most insecticides are insect neurotoxins. Evidence is emerging that sublethal doses of these neurotoxins are affecting the learning and memory of both wild and managed bee colonies, exacerbating the negative effects of pesticide exposure and reducing individual foraging efficiency. 2. Variation i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221055/ https://www.ncbi.nlm.nih.gov/pubmed/30449899 http://dx.doi.org/10.1111/1365-2664.13193 |
_version_ | 1783368947373965312 |
---|---|
author | Siviter, Harry Koricheva, Julia Brown, Mark J. F. Leadbeater, Ellouise |
author_facet | Siviter, Harry Koricheva, Julia Brown, Mark J. F. Leadbeater, Ellouise |
author_sort | Siviter, Harry |
collection | PubMed |
description | 1. Most insecticides are insect neurotoxins. Evidence is emerging that sublethal doses of these neurotoxins are affecting the learning and memory of both wild and managed bee colonies, exacerbating the negative effects of pesticide exposure and reducing individual foraging efficiency. 2. Variation in methodologies and interpretation of results across studies has precluded the quantitative evaluation of these impacts that is needed to make recommendations for policy change. It is not clear whether robust effects occur under acute exposure regimes (often argued to be more field‐realistic than the chronic regimes upon which many studies are based), for field‐realistic dosages, and for pesticides other than neonicotinoids. 3. Here we use meta‐analysis to examine the impact of pesticides on bee performance in proboscis extension‐based learning assays, the paradigm most commonly used to assess learning and memory in bees. We draw together 104 (learning) and 167 (memory) estimated effect sizes across a diverse range of studies. 4. We detected significant negative effects of pesticides on learning and memory (i) at field realistic dosages, (ii) under both chronic and acute application, and (iii) for both neonicotinoid and non‐neonicotinoid pesticides groups. 5. We also expose key gaps in the literature that include a critical lack of studies on non‐Apis bees, on larval exposure (potentially one of the major exposure routes), and on performance in alternative learning paradigms. 6. Policy implications. Procedures for the registration of new pesticides within EU member states now typically require assessment of risks to pollinators if potential target crops are attractive to bees. However, our results provide robust quantitative evidence for subtle, sublethal effects, the consequences of which are unlikely to be detected within small‐scale prelicensing laboratory or field trials, but can be critical when pesticides are used at a landscape scale. Our findings highlight the need for long‐term postlicensing environmental safety monitoring as a requirement within licensing policy for plant protection products. |
format | Online Article Text |
id | pubmed-6221055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62210552018-11-15 Quantifying the impact of pesticides on learning and memory in bees Siviter, Harry Koricheva, Julia Brown, Mark J. F. Leadbeater, Ellouise J Appl Ecol Pollination 1. Most insecticides are insect neurotoxins. Evidence is emerging that sublethal doses of these neurotoxins are affecting the learning and memory of both wild and managed bee colonies, exacerbating the negative effects of pesticide exposure and reducing individual foraging efficiency. 2. Variation in methodologies and interpretation of results across studies has precluded the quantitative evaluation of these impacts that is needed to make recommendations for policy change. It is not clear whether robust effects occur under acute exposure regimes (often argued to be more field‐realistic than the chronic regimes upon which many studies are based), for field‐realistic dosages, and for pesticides other than neonicotinoids. 3. Here we use meta‐analysis to examine the impact of pesticides on bee performance in proboscis extension‐based learning assays, the paradigm most commonly used to assess learning and memory in bees. We draw together 104 (learning) and 167 (memory) estimated effect sizes across a diverse range of studies. 4. We detected significant negative effects of pesticides on learning and memory (i) at field realistic dosages, (ii) under both chronic and acute application, and (iii) for both neonicotinoid and non‐neonicotinoid pesticides groups. 5. We also expose key gaps in the literature that include a critical lack of studies on non‐Apis bees, on larval exposure (potentially one of the major exposure routes), and on performance in alternative learning paradigms. 6. Policy implications. Procedures for the registration of new pesticides within EU member states now typically require assessment of risks to pollinators if potential target crops are attractive to bees. However, our results provide robust quantitative evidence for subtle, sublethal effects, the consequences of which are unlikely to be detected within small‐scale prelicensing laboratory or field trials, but can be critical when pesticides are used at a landscape scale. Our findings highlight the need for long‐term postlicensing environmental safety monitoring as a requirement within licensing policy for plant protection products. John Wiley and Sons Inc. 2018-07-10 2018-11 /pmc/articles/PMC6221055/ /pubmed/30449899 http://dx.doi.org/10.1111/1365-2664.13193 Text en © 2018 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Pollination Siviter, Harry Koricheva, Julia Brown, Mark J. F. Leadbeater, Ellouise Quantifying the impact of pesticides on learning and memory in bees |
title | Quantifying the impact of pesticides on learning and memory in bees |
title_full | Quantifying the impact of pesticides on learning and memory in bees |
title_fullStr | Quantifying the impact of pesticides on learning and memory in bees |
title_full_unstemmed | Quantifying the impact of pesticides on learning and memory in bees |
title_short | Quantifying the impact of pesticides on learning and memory in bees |
title_sort | quantifying the impact of pesticides on learning and memory in bees |
topic | Pollination |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221055/ https://www.ncbi.nlm.nih.gov/pubmed/30449899 http://dx.doi.org/10.1111/1365-2664.13193 |
work_keys_str_mv | AT siviterharry quantifyingtheimpactofpesticidesonlearningandmemoryinbees AT korichevajulia quantifyingtheimpactofpesticidesonlearningandmemoryinbees AT brownmarkjf quantifyingtheimpactofpesticidesonlearningandmemoryinbees AT leadbeaterellouise quantifyingtheimpactofpesticidesonlearningandmemoryinbees |