Cargando…
Large-scale protein function prediction using heterogeneous ensembles
Heterogeneous ensembles are an effective approach in scenarios where the ideal data type and/or individual predictor are unclear for a given problem. These ensembles have shown promise for protein function prediction (PFP), but their ability to improve PFP at a large scale is unclear. The overall go...
Autores principales: | Wang, Linhua, Law, Jeffrey, Kale, Shiv D., Murali, T. M., Pandey, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221071/ https://www.ncbi.nlm.nih.gov/pubmed/30450194 http://dx.doi.org/10.12688/f1000research.16415.1 |
Ejemplares similares
-
Integrating multimodal data through interpretable heterogeneous ensembles
por: Li, Yan Chak, et al.
Publicado: (2022) -
Integrating multimodal data through interpretable heterogeneous ensembles
por: Li, Yan Chak, et al.
Publicado: (2022) -
Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data
por: Do, Van Hoan, et al.
Publicado: (2021) -
Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients
por: Pölsterl, Sebastian, et al.
Publicado: (2017) -
SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning
por: Hanson, Jack, et al.
Publicado: (2019)