Cargando…

Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride

The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under...

Descripción completa

Detalles Bibliográficos
Autores principales: Kearney, John S. C., Graužinytė, Miglė, Smith, Dean, Sneed, Daniel, Childs, Christian, Hinton, Jasmine, Park, Changyong, Smith, Jesse S., Kim, Eunja, Fitch, Samuel D. S., Hector, Andrew L., Pickard, Chris J., Flores‐Livas, José A., Salamat, Ashkan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221123/
https://www.ncbi.nlm.nih.gov/pubmed/30022577
http://dx.doi.org/10.1002/anie.201805038
_version_ 1783368962125332480
author Kearney, John S. C.
Graužinytė, Miglė
Smith, Dean
Sneed, Daniel
Childs, Christian
Hinton, Jasmine
Park, Changyong
Smith, Jesse S.
Kim, Eunja
Fitch, Samuel D. S.
Hector, Andrew L.
Pickard, Chris J.
Flores‐Livas, José A.
Salamat, Ashkan
author_facet Kearney, John S. C.
Graužinytė, Miglė
Smith, Dean
Sneed, Daniel
Childs, Christian
Hinton, Jasmine
Park, Changyong
Smith, Jesse S.
Kim, Eunja
Fitch, Samuel D. S.
Hector, Andrew L.
Pickard, Chris J.
Flores‐Livas, José A.
Salamat, Ashkan
author_sort Kearney, John S. C.
collection PubMed
description The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn(3)N(4) under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.
format Online
Article
Text
id pubmed-6221123
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-62211232018-11-15 Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride Kearney, John S. C. Graužinytė, Miglė Smith, Dean Sneed, Daniel Childs, Christian Hinton, Jasmine Park, Changyong Smith, Jesse S. Kim, Eunja Fitch, Samuel D. S. Hector, Andrew L. Pickard, Chris J. Flores‐Livas, José A. Salamat, Ashkan Angew Chem Int Ed Engl Communications The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn(3)N(4) under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications. John Wiley and Sons Inc. 2018-08-08 2018-09-03 /pmc/articles/PMC6221123/ /pubmed/30022577 http://dx.doi.org/10.1002/anie.201805038 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Kearney, John S. C.
Graužinytė, Miglė
Smith, Dean
Sneed, Daniel
Childs, Christian
Hinton, Jasmine
Park, Changyong
Smith, Jesse S.
Kim, Eunja
Fitch, Samuel D. S.
Hector, Andrew L.
Pickard, Chris J.
Flores‐Livas, José A.
Salamat, Ashkan
Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title_full Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title_fullStr Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title_full_unstemmed Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title_short Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
title_sort pressure‐tuneable visible‐range band gap in the ionic spinel tin nitride
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221123/
https://www.ncbi.nlm.nih.gov/pubmed/30022577
http://dx.doi.org/10.1002/anie.201805038
work_keys_str_mv AT kearneyjohnsc pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT grauzinytemigle pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT smithdean pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT sneeddaniel pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT childschristian pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT hintonjasmine pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT parkchangyong pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT smithjesses pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT kimeunja pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT fitchsamuelds pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT hectorandrewl pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT pickardchrisj pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT floreslivasjosea pressuretuneablevisiblerangebandgapintheionicspineltinnitride
AT salamatashkan pressuretuneablevisiblerangebandgapintheionicspineltinnitride