Cargando…

Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints

BACKGROUND. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly c...

Descripción completa

Detalles Bibliográficos
Autores principales: George, Ochuwa O., Amaeze, Nnamdi H., Babatunde, Emmanuel, Otitoloju, Adebayo A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Black Smith Institute 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221448/
https://www.ncbi.nlm.nih.gov/pubmed/30524842
http://dx.doi.org/10.5696/2156-9614-7.16.71
_version_ 1783369029552963584
author George, Ochuwa O.
Amaeze, Nnamdi H.
Babatunde, Emmanuel
Otitoloju, Adebayo A.
author_facet George, Ochuwa O.
Amaeze, Nnamdi H.
Babatunde, Emmanuel
Otitoloju, Adebayo A.
author_sort George, Ochuwa O.
collection PubMed
description BACKGROUND. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly consumed fish in Lagos. OBJECTIVES. This study investigated the effects of two commonly used antifouling paints (Berger TBT-free (A/F783 (H)), reddish brown color and Silka Marine lead based paint, pale orange color) on a non-target catfish species, Clarias gariepinus. METHODS. The study involved an initial 96-hour acute toxicity assay followed by chronic toxicity evaluation (using 1/10th and 1/100th 96-hour median lethal concentration (LC(50)) values) for 28 days to determine the ability of the paints to induce micronucleus and red blood cell abnormalities, and histopathological as well as oxidative stress effects in the catfish.Examined anti-oxidative stress enzyme activities include superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione-s-transferase (GST). RESULTS. Acute toxicity evaluation results indicated that the Berger paint was 16.1-times more toxic than Silka paint with 96-hour LC(50) values of 0.71 mg/L and 11.49 mg/L, respectively. Results from the biochemical assay indicated significantly higher (P<0.05) levels of a lipid peroxidation product, malondialdehyde, in Silka-exposed catfish compared to the control. All enzymes showed significantly higher activities in Berger paint-exposed catfish compared to the control. There was evidence of micronucleated and binucleated cells in the red blood cells of fish exposed to both paints. Histopathological assessment indicated that the exposed fish gills showed evidence of abnormalities such as curved lamellae epithelial necrosis, epithelial lifting and hyperplasia. The liver samples of the catfish showed evidence of portal inflammation as well as mild to severe steatosis, while the gonads showed varying percentages of follicle degeneration. CONCLUSIONS. The present study combined an array of biomarkers to determine the negative health impacts of two commonly used antifouling paints on non-target catfish inhabiting Lagos Lagoon. Further in situ studies are recommended to determine the current status of the lagoon fish. ETHICS APPROVAL. Ethical approval was obtained from the Department of Zoology, University of Lagos, Post-Graduate Committee. Note that this work commenced before the establishment of the University of Lagos Ethical Committee for the use of animals and humans in scientific studies. The committee does not give retroactive approval but stands by existing approvals before its establishment. However, this study followed the World Medical Association principles on the treatment of animals used in research (https://www.wma.net/policies-post/wma-statement-on-animal-use-in-biomedical-research/), and also American Fisheries Society Guidelines for the Use of Fishes in Research (https://fisheries.org/policy-media/science-guidelines/guidelines-for-the-use-of-fishes-in-research/)
format Online
Article
Text
id pubmed-6221448
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Black Smith Institute
record_format MEDLINE/PubMed
spelling pubmed-62214482018-12-06 Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints George, Ochuwa O. Amaeze, Nnamdi H. Babatunde, Emmanuel Otitoloju, Adebayo A. J Health Pollut Research BACKGROUND. Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly consumed fish in Lagos. OBJECTIVES. This study investigated the effects of two commonly used antifouling paints (Berger TBT-free (A/F783 (H)), reddish brown color and Silka Marine lead based paint, pale orange color) on a non-target catfish species, Clarias gariepinus. METHODS. The study involved an initial 96-hour acute toxicity assay followed by chronic toxicity evaluation (using 1/10th and 1/100th 96-hour median lethal concentration (LC(50)) values) for 28 days to determine the ability of the paints to induce micronucleus and red blood cell abnormalities, and histopathological as well as oxidative stress effects in the catfish.Examined anti-oxidative stress enzyme activities include superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione-s-transferase (GST). RESULTS. Acute toxicity evaluation results indicated that the Berger paint was 16.1-times more toxic than Silka paint with 96-hour LC(50) values of 0.71 mg/L and 11.49 mg/L, respectively. Results from the biochemical assay indicated significantly higher (P<0.05) levels of a lipid peroxidation product, malondialdehyde, in Silka-exposed catfish compared to the control. All enzymes showed significantly higher activities in Berger paint-exposed catfish compared to the control. There was evidence of micronucleated and binucleated cells in the red blood cells of fish exposed to both paints. Histopathological assessment indicated that the exposed fish gills showed evidence of abnormalities such as curved lamellae epithelial necrosis, epithelial lifting and hyperplasia. The liver samples of the catfish showed evidence of portal inflammation as well as mild to severe steatosis, while the gonads showed varying percentages of follicle degeneration. CONCLUSIONS. The present study combined an array of biomarkers to determine the negative health impacts of two commonly used antifouling paints on non-target catfish inhabiting Lagos Lagoon. Further in situ studies are recommended to determine the current status of the lagoon fish. ETHICS APPROVAL. Ethical approval was obtained from the Department of Zoology, University of Lagos, Post-Graduate Committee. Note that this work commenced before the establishment of the University of Lagos Ethical Committee for the use of animals and humans in scientific studies. The committee does not give retroactive approval but stands by existing approvals before its establishment. However, this study followed the World Medical Association principles on the treatment of animals used in research (https://www.wma.net/policies-post/wma-statement-on-animal-use-in-biomedical-research/), and also American Fisheries Society Guidelines for the Use of Fishes in Research (https://fisheries.org/policy-media/science-guidelines/guidelines-for-the-use-of-fishes-in-research/) Black Smith Institute 2017-12-18 /pmc/articles/PMC6221448/ /pubmed/30524842 http://dx.doi.org/10.5696/2156-9614-7.16.71 Text en © 2017 Pure Earth This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research
George, Ochuwa O.
Amaeze, Nnamdi H.
Babatunde, Emmanuel
Otitoloju, Adebayo A.
Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_full Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_fullStr Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_full_unstemmed Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_short Genotoxic, Histopathological and Oxidative Stress Responses in Catfish, Clarias gariepinus, Exposed to Two Antifouling Paints
title_sort genotoxic, histopathological and oxidative stress responses in catfish, clarias gariepinus, exposed to two antifouling paints
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221448/
https://www.ncbi.nlm.nih.gov/pubmed/30524842
http://dx.doi.org/10.5696/2156-9614-7.16.71
work_keys_str_mv AT georgeochuwao genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT amaezennamdih genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT babatundeemmanuel genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints
AT otitolojuadebayoa genotoxichistopathologicalandoxidativestressresponsesincatfishclariasgariepinusexposedtotwoantifoulingpaints