Cargando…

Determination of Trace Nickel in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Mixed Micelle-Mediated Cloud Point Extraction

A simple and sensitive cloud point extraction method for the preconcentration of ultra-trace amounts of nickel as a prior step to its determination by graphite furnace atomic absorption spectrometry was proposed. It is based on the reaction of nickel with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoanil...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Quan, Huo, Yanyan, Yang, Longhu, Yang, Xiaohui, He, Yaping, Wu, Jiangyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222332/
https://www.ncbi.nlm.nih.gov/pubmed/30309038
http://dx.doi.org/10.3390/molecules23102597
Descripción
Sumario:A simple and sensitive cloud point extraction method for the preconcentration of ultra-trace amounts of nickel as a prior step to its determination by graphite furnace atomic absorption spectrometry was proposed. It is based on the reaction of nickel with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in HAc–NaAc buffer media and mixed micelle-mediated extraction of the complex using the anionic surfactant sodium dodecyl sulfate sodium (SDS) and non-ionic surfactant (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene (Triton X-114). The optimal reaction and extraction conditions such as pH, concentration of 5-Br-PADMA, SDS and Triton X-114, equilibrium temperature, incubation, and centrifuge time were evaluated and optimized. Under the optimal conditions, the calibration graph was linear over the range 0.1–5.5 ng/mL of nickel with a correlation coefficient of 0.9942. The detection limit obtained was 0.031 ng/mL, and the relative standard deviation was 2.1% for nickel (c = 2 ng/mL, n = 6). The proposed method was successfully applied to the determination of nickel in water samples.