Cargando…

The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography

Until less than 10 years ago, chiral separations were carried out with columns packed with 5 or 3 μm fully porous particles (FPPs). Times to resolve enantiomeric mixtures were easily larger than 30 min, or so. Pushed especially by stringent requirements from medicinal and pharmaceutical industries,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismail, Omar H., Felletti, Simona, De Luca, Chiara, Pasti, Luisa, Marchetti, Nicola, Costa, Valentina, Gasparrini, Francesco, Cavazzini, Alberto, Catani, Martina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222346/
https://www.ncbi.nlm.nih.gov/pubmed/30347852
http://dx.doi.org/10.3390/molecules23102709
Descripción
Sumario:Until less than 10 years ago, chiral separations were carried out with columns packed with 5 or 3 μm fully porous particles (FPPs). Times to resolve enantiomeric mixtures were easily larger than 30 min, or so. Pushed especially by stringent requirements from medicinal and pharmaceutical industries, during the last years the field of chiral separations by liquid chromatography has undergone what can be defined a “true revolution”. With the purpose of developing ever faster and efficient method of separations, indeed, very efficient particle formats, such as superficially porous particles (SPPs) or sub-2 μm FPPs, have been functionalized with chiral selectors and employed in ultrafast applications. Thanks to the use of short column (1–2 cm long), packed with these extremely efficient chiral stationary phases (CSPs), operated at very high flow rates (5–8 mL/min), resolution of racemates could be accomplished in very short time, in many cases less than 1 s in normal-, reversed-phase and HILIC conditions. These CSPs have been found to be particularly promising also to carry out high-throughput separations under supercritical fluid chromatography (SFC) conditions. The most important results that have been recently achieved in terms of ultrafast, high-throughput enantioseparations both in liquid and supercritical fluid chromatography with particular attention to the very important field of bioactive chiral compounds will be reviewed in this manuscript. Attention will be focused not only on the latest introduced CSPs and their applications, but also on instrumental modifications which are required in some cases in order to fully exploit the intrinsic potential of new generation chiral columns.