Cargando…
Advances in Magnetic Nanoparticles-Supported Palladium Complexes for Coupling Reactions
Carbon‒carbon (C‒C) and carbon‒heteroatom (C‒X) bonds that form via transition-metal-catalyzed processes have been extensively used in the organic synthesis and preparation of natural products and important compounds such as heterocycles, biologically active molecules, and dendrimers. Among the most...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222409/ https://www.ncbi.nlm.nih.gov/pubmed/30287773 http://dx.doi.org/10.3390/molecules23102532 |
Sumario: | Carbon‒carbon (C‒C) and carbon‒heteroatom (C‒X) bonds that form via transition-metal-catalyzed processes have been extensively used in the organic synthesis and preparation of natural products and important compounds such as heterocycles, biologically active molecules, and dendrimers. Among the most significant catalysts, magnetic nanoparticles-supported palladium complexes are very effective, versatile, and heterogeneous catalysts for a wide range of C‒C and C‒X coupling reactions due to their reusability, thermal stability, and excellent catalytic performance. In this review, recent advances to develop magnetic nanoparticles supported palladium complexes, including their preparation, characterization, catalytic application, and reusability in the formation of both C‒C and C‒X bonds, by authors such as Sonogashira, Heck, Suzuki‒Miyaura, and Stille, and a few examples concerning N-arylation, S-arylation, and C(sp2)-P coupling reactions are discussed. |
---|