Cargando…
A Sensitive and Rapid UPLC-MS/MS Method for Determination of Monosaccharides and Anti-Allergic Effect of the Polysaccharides Extracted from Saposhnikoviae Radix
Background: Allergic disease is a common clinical disease. Natural products provide an important source for a wide range of potential anti-allergic agents. This study was designed to evaluate the anti-allergic activities of the water-soluble polysaccharides extracted and purified from Saposhnikoviae...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222413/ https://www.ncbi.nlm.nih.gov/pubmed/30071672 http://dx.doi.org/10.3390/molecules23081924 |
Sumario: | Background: Allergic disease is a common clinical disease. Natural products provide an important source for a wide range of potential anti-allergic agents. This study was designed to evaluate the anti-allergic activities of the water-soluble polysaccharides extracted and purified from Saposhnikoviae Radix (SRPS). The composition and content of monosaccharides were determined to provide a material basis. Methods: An ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established to determine the composition and content of SRPS. 2,4-dinitrofluorobenzene (DNFB) induced a delayed-type hypersensitivity (DTH) mouse model orally administrated SRPS for seven consecutive days. Ear swelling, organ index, and serum IgE levels were observed to evaluate the anti-allergic activities. Results: The UPLC-MS/MS analysis showed that SRPS was consisted of eight monosaccharides including galacturonic acid, mannose, glucose, galactose, rhamnose, fucose, ribose, and arabinose with a relative molar ratio of 4.42%, 7.86%, 23.69%, 12.06%, 3.10%, 0.45%, 0.71%, and 47.70%, respectively. SRPS could effectively reduce ear swelling, a thymus index, and a serum IgE levels. Conclusions: The method was simple, rapid, sensitive, and reproducible, which could be used to analyze and determine the monosaccharide composition of SRPS. The vivo experiments demonstrated that SRPS may effectively inhibit development of DNFB-induced DTH. SRPS is a novel potential resource for natural anti-allergic drugs. |
---|