Cargando…
Characterization of Red Wine Proanthocyanidins Using a Putative Proanthocyanidin Database, Amide Hydrophilic Interaction Liquid Chromatography (HILIC), and Time-of-Flight Mass Spectrometry
Proanthocyanidins are complex polymers of flavan-3-ol monomers and play a key sensory and health role in foods and beverages. We describe here a novel method for characterizing wine proanthocyanidins using a theoretical database comprised of the chemical formula and exact mass of 996 compounds. The...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222522/ https://www.ncbi.nlm.nih.gov/pubmed/30340402 http://dx.doi.org/10.3390/molecules23102687 |
Sumario: | Proanthocyanidins are complex polymers of flavan-3-ol monomers and play a key sensory and health role in foods and beverages. We describe here a novel method for characterizing wine proanthocyanidins using a theoretical database comprised of the chemical formula and exact mass of 996 compounds. The database was constructed using the four primary grape and wine proanthocyanidin monomers: (epi)catechin, (epi)catechin-3-O-gallate, (epi)gallocatechin, and (epi)gallocatechin-3-O-gallate, each combined in all possible combinations up to a polymerization of 10. The database was queried against spectra collected using ultrahigh performance liquid chromatography (UHLPC) with a hydrophilic interaction liquid chromatography (HILIC) column and coupled to a high-resolution accurate mass quadrupole time-of-flight mass spectrometer (Q-TOF MS). Two wine samples produced with different post fermentation maceration were analyzed using the presented method to demonstrate application for analysis of diverse proanthocyanidins. The first sample was pressed immediately at the end of fermentation when all sugar had been utilized and the second received eight weeks of post fermentation maceration. The HILIC column combined with high resolution tandem mass spectrometry and database matching provided tentative identification of 89 compounds with excellent resolution and without the need for two-dimensional separations. The identified compounds were visualized with Kendrick mass analysis, a simple technique allowing for rapid visualization of which compounds are present in a given sample. |
---|