Cargando…

The Behavior of Magnetic Properties in the Clusters of 4d Transition Metals

The current focus of material science researchers is on the magnetic behavior of transition metal clusters due to its great hope for future technological applications. It is common knowledge that the 4d transition elements are not magnetic at their bulk size. However, studies indicate that their mag...

Descripción completa

Detalles Bibliográficos
Autores principales: Berry, Habte, Wang, Baolin, Zhang, Qinfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222613/
https://www.ncbi.nlm.nih.gov/pubmed/30060624
http://dx.doi.org/10.3390/molecules23081896
Descripción
Sumario:The current focus of material science researchers is on the magnetic behavior of transition metal clusters due to its great hope for future technological applications. It is common knowledge that the 4d transition elements are not magnetic at their bulk size. However, studies indicate that their magnetic properties are strongly dependent on their cluster sizes. This study attempts to identify magnetic properties of 4d transition metal clusters. Using a tight-binding Friedel model for the density of d-electron states, we investigated the critical size for the magnetic-nonmagnetic transition of 4d transition-metal clusters. Approaching to the critical point, the density of states of the cluster near the Fermi level is higher than [Formula: see text] and the discrete energy levels form a quasi-continuous band. Where [Formula: see text] is correlation integral. In order to determine the critical size, we considered a square shape band and fcc, bcc, icosahedral and cuboctahedral close-packed structures of the clusters. We also investigated this size dependent magnetic behavior using Heisenberg model. Taking some quantum mechanical approximations in to consideration, we determined magnetic behavior of the clusters. For practicality, we considered three clusters of transition metals (Ru, Rh and Pd) and the obtained results are in line with the results of previous studies.