Cargando…

Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway

This study aimed to investigate the effect of Ru (Rut) on angiogenesis, and the underlying regulation mechanism of signal transduction. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, adhesion inhibition experiment, migration inhibition experiment, and chick embryo chor...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Lijun, Wu, Mingfei, Li, Zeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222666/
https://www.ncbi.nlm.nih.gov/pubmed/30111763
http://dx.doi.org/10.3390/molecules23082047
_version_ 1783369259516166144
author Ji, Lijun
Wu, Mingfei
Li, Zeng
author_facet Ji, Lijun
Wu, Mingfei
Li, Zeng
author_sort Ji, Lijun
collection PubMed
description This study aimed to investigate the effect of Ru (Rut) on angiogenesis, and the underlying regulation mechanism of signal transduction. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, adhesion inhibition experiment, migration inhibition experiment, and chick embryo chorioallantoic membrane (CAM) assays were performed on models of angiogenesis. The potential targets of rutaecarpine (Ru) were reverse screened with Discovery Studio 2017. The interaction between the compound and target were detected by surface plasmon resonance (SPR), enzyme-activity experiment, and Western blot assay. The obtained results confirmed that Ru exhibited modest inhibitory activity against human umbilical vein endothelial cells (HUVECs) (IC(50) =16.54 ± 2.4 μM) and remarkable inhibitive effect against the migration and adhesion of HUVECs, as well as significant anti-angiogenesis activities in the CAM assay. The possible targets of vascular endothelial growth factor receptor 2 (VEGFR2) were identified by computer-aided simulation. Results showed a good binding relationship between the ligand and target through molecular docking, and this relationship was confirmed by SPR analysis. Furthermore, enzyme-activity experiment and western blot assay showed that Ru remarkably inhibited the activity of VEGFR2 and blocked the VEGFR2-mediated Akt/ (mTOR)/p70s6k signaling pathway in vitro. Ru can be a potential drug candidate for cancer prevention and cancer therapy.
format Online
Article
Text
id pubmed-6222666
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62226662018-11-13 Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway Ji, Lijun Wu, Mingfei Li, Zeng Molecules Article This study aimed to investigate the effect of Ru (Rut) on angiogenesis, and the underlying regulation mechanism of signal transduction. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, adhesion inhibition experiment, migration inhibition experiment, and chick embryo chorioallantoic membrane (CAM) assays were performed on models of angiogenesis. The potential targets of rutaecarpine (Ru) were reverse screened with Discovery Studio 2017. The interaction between the compound and target were detected by surface plasmon resonance (SPR), enzyme-activity experiment, and Western blot assay. The obtained results confirmed that Ru exhibited modest inhibitory activity against human umbilical vein endothelial cells (HUVECs) (IC(50) =16.54 ± 2.4 μM) and remarkable inhibitive effect against the migration and adhesion of HUVECs, as well as significant anti-angiogenesis activities in the CAM assay. The possible targets of vascular endothelial growth factor receptor 2 (VEGFR2) were identified by computer-aided simulation. Results showed a good binding relationship between the ligand and target through molecular docking, and this relationship was confirmed by SPR analysis. Furthermore, enzyme-activity experiment and western blot assay showed that Ru remarkably inhibited the activity of VEGFR2 and blocked the VEGFR2-mediated Akt/ (mTOR)/p70s6k signaling pathway in vitro. Ru can be a potential drug candidate for cancer prevention and cancer therapy. MDPI 2018-08-15 /pmc/articles/PMC6222666/ /pubmed/30111763 http://dx.doi.org/10.3390/molecules23082047 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ji, Lijun
Wu, Mingfei
Li, Zeng
Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title_full Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title_fullStr Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title_full_unstemmed Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title_short Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway
title_sort rutacecarpine inhibits angiogenesis by targeting the vegfr2 and vegfr2-mediated akt/mtor/p70s6k signaling pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222666/
https://www.ncbi.nlm.nih.gov/pubmed/30111763
http://dx.doi.org/10.3390/molecules23082047
work_keys_str_mv AT jilijun rutacecarpineinhibitsangiogenesisbytargetingthevegfr2andvegfr2mediatedaktmtorp70s6ksignalingpathway
AT wumingfei rutacecarpineinhibitsangiogenesisbytargetingthevegfr2andvegfr2mediatedaktmtorp70s6ksignalingpathway
AT lizeng rutacecarpineinhibitsangiogenesisbytargetingthevegfr2andvegfr2mediatedaktmtorp70s6ksignalingpathway