Cargando…

Pharmacokinetic and Metabolism Studies of 12-Riboside-Pseudoginsengenin DQ by UPLC-MS/MS and UPLC-QTOF-MS(E)

Pharmacokinetic and metabolism studies of 12-riboside-pseudoginsengenin DQ (RPDQ), a novel ginsenoside with an anti-cancer effect, were carried out, aiming at discussing the characteristics of the ginsenoside with glycosylation site at C-12. In the pharmacokinetic analysis, we developed and validate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhenzhou, Lin, Hongqiang, Zhu, Hailin, Yang, Na, Zhou, Baisong, Wang, Cuizhu, Li, Pingya, Liu, Jinping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222672/
https://www.ncbi.nlm.nih.gov/pubmed/30274288
http://dx.doi.org/10.3390/molecules23102499
Descripción
Sumario:Pharmacokinetic and metabolism studies of 12-riboside-pseudoginsengenin DQ (RPDQ), a novel ginsenoside with an anti-cancer effect, were carried out, aiming at discussing the characteristics of the ginsenoside with glycosylation site at C-12. In the pharmacokinetic analysis, we developed and validated a method by UPLC-MS to quantify RPDQ in rat plasma. In the range of 5–1000 ng/mL, the assay was linear (R(2) > 0.9966), with the LLOQ (lower limit of quantification) being 5 ng/mL. The LOD (limit of detection) was 1.5 ng/mL. The deviations of intra-day and inter-day, expressed as relative standard deviation (RSD), were ≤ 3.51% and ≤ 5.41% respectively. The accuracy, expressed as relative error (RE), was in the range –8.82~3.47% and –5.61~2.87%, respectively. The recoveries were in the range 85.66~92.90%. The method was then applied to a pharmacokinetic study in rats intragastrically administrated with 6, 12, and 24 mg/kg RPDQ. The results showed that RPDQ exhibited slow oral absorption (T(max) = 7.0 h, 7.5 h, and 7.0 h, respectively), low elimination (t(1/2) = 12.59 h, 12.83 h, and 13.74 h, respectively) and poor absolute bioavailability (5.55, 5.15, and 6.08%, respectively). Moreover, the investigation of metabolites were carried out by UPLC-QTOF-MS. Thirteen metabolites of RPDQ were characterized from plasma, bile, urine, and feces of rats. Some metabolic pathways, including oxidation, acetylation, hydration, reduction, hydroxylation, glycine conjugation, sulfation, phosphorylation, glucuronidation, glutathione conjugation, and deglycosylation, were profiled. In general, both the rapid quantitative method and a good understanding of the characteristics of RPDQ in vivo were provided in this study.