Cargando…
Identifying Phage Virion Proteins by Using Two-Step Feature Selection Methods
Accurate identification of phage virion protein is not only a key step for understanding the function of the phage virion protein but also helpful for further understanding the lysis mechanism of the bacterial cell. Since traditional experimental methods are time-consuming and costly for identifying...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222849/ https://www.ncbi.nlm.nih.gov/pubmed/30103458 http://dx.doi.org/10.3390/molecules23082000 |
Sumario: | Accurate identification of phage virion protein is not only a key step for understanding the function of the phage virion protein but also helpful for further understanding the lysis mechanism of the bacterial cell. Since traditional experimental methods are time-consuming and costly for identifying phage virion proteins, it is extremely urgent to apply machine learning methods to accurately and efficiently identify phage virion proteins. In this work, a support vector machine (SVM) based method was proposed by mixing multiple sets of optimal g-gap dipeptide compositions. The analysis of variance (ANOVA) and the minimal-redundancy-maximal-relevance (mRMR) with an increment feature selection (IFS) were applied to single out the optimal feature set. In the five-fold cross-validation test, the proposed method achieved an overall accuracy of 87.95%. We believe that the proposed method will become an efficient and powerful method for scientists concerning phage virion proteins. |
---|