Cargando…
Machine Learning Approaches for Protein–Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment
Hot spots are the subset of interface residues that account for most of the binding free energy, and they play essential roles in the stability of protein binding. Effectively identifying which specific interface residues of protein–protein complexes form the hot spots is critical for understanding...
Autores principales: | Liu, Siyu, Liu, Chuyao, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222875/ https://www.ncbi.nlm.nih.gov/pubmed/30287797 http://dx.doi.org/10.3390/molecules23102535 |
Ejemplares similares
-
Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
por: Wang, Hao, et al.
Publicado: (2018) -
A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces
por: Melo, Rita, et al.
Publicado: (2016) -
Hot spot prediction in protein-protein interactions by an ensemble system
por: Liu, Quanya, et al.
Publicado: (2018) -
A feature-based approach to modeling protein–protein interaction hot spots
por: Cho, Kyu-il, et al.
Publicado: (2009) -
Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods
por: Lise, Stefano, et al.
Publicado: (2009)