Cargando…
The Inhibitory Effects of Cyclodepsipeptides from the Entomopathogenic Fungus Beauveria bassiana on Myofibroblast Differentiation in A549 Alveolar Epithelial Cells
Pulmonary fibrosis (PF) is a chronic and fatal lung disease with few treatment options. Although the pathogenesis of PF is not clear, a chronic inflammatory response to continuous damage is considered the cause of pulmonary fibrosis. PF is characterized by excessive accumulation of extracellular mat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222899/ https://www.ncbi.nlm.nih.gov/pubmed/30297669 http://dx.doi.org/10.3390/molecules23102568 |
Sumario: | Pulmonary fibrosis (PF) is a chronic and fatal lung disease with few treatment options. Although the pathogenesis of PF is not clear, a chronic inflammatory response to continuous damage is considered the cause of pulmonary fibrosis. PF is characterized by excessive accumulation of extracellular matrix (ECM), therefore, inhibition of myofibroblast differentiation is a good therapeutic target for PF. As part of our continuing endeavor to explore biologically active metabolites from insect-associated microbes, we found that the MeOH extract of the culture broth from the entomopathogenic fungus Beauveria bassiana inhibited collagen induction and E-cadherin down-regulation. In order to identify active compounds, we carried out chemical analysis of the MeOH extract with the assistance of LC/MS-guided isolation approach, which led to the successful identification of four cyclodepsipeptides 1–4. Among the isolates, compound 2 showed inhibitory effects on myofibroblast differentiation induced by TGF-β1. Compound 2 inhibited induction of α-SMA and N-cadherin, which are myofibroblast markers, and blocked the accumulation of ECM proteins such as collagen and fibronectin. Overall these findings demonstrate that compound 2 can be used to attenuate pulmonary fibrosis by targeting myo- fibroblast differentiation. |
---|