Cargando…
Deblender: a semi−/unsupervised multi-operational computational method for complete deconvolution of expression data from heterogeneous samples
BACKGROUND: Towards discovering robust cancer biomarkers, it is imperative to unravel the cellular heterogeneity of patient samples and comprehend the interactions between cancer cells and the various cell types in the tumor microenvironment. The first generation of ‘partial’ computational deconvolu...
Autores principales: | Dimitrakopoulou, Konstantina, Wik, Elisabeth, Akslen, Lars A., Jonassen, Inge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223087/ https://www.ncbi.nlm.nih.gov/pubmed/30404611 http://dx.doi.org/10.1186/s12859-018-2442-5 |
Ejemplares similares
-
Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics
por: Chen, Li, et al.
Publicado: (2014) -
Expression of Nestin associates with BRCA1 mutations, a basal-like phenotype and aggressive breast cancer
por: Krüger, Kristi, et al.
Publicado: (2017) -
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
por: Wang, Zeya, et al.
Publicado: (2018) -
CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data
por: Kang, Kai, et al.
Publicado: (2019) -
Deconvolution of heterogeneous tumor samples using partial reference signals
por: Qin, Yufang, et al.
Publicado: (2020)