Cargando…
Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling
We tested the hypothesis that compared with a moderate-intensity warm-up, a work-matched high-intensity warm-up improves final-sprint power output during the last 30 s of a 120-s supramaximal exercise that mimics the final sprint during events such as the 800-m run, 1,500-m speed skate, or Keirin (c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Institute of Sport in Warsaw
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224842/ https://www.ncbi.nlm.nih.gov/pubmed/30449939 http://dx.doi.org/10.5114/biolsport.2018.74633 |
_version_ | 1783369673835806720 |
---|---|
author | Fujii, Naoto Nishida, Yuya Ogawa, Takeshi Tanigawa, Satoru Nishiyasu, Takeshi |
author_facet | Fujii, Naoto Nishida, Yuya Ogawa, Takeshi Tanigawa, Satoru Nishiyasu, Takeshi |
author_sort | Fujii, Naoto |
collection | PubMed |
description | We tested the hypothesis that compared with a moderate-intensity warm-up, a work-matched high-intensity warm-up improves final-sprint power output during the last 30 s of a 120-s supramaximal exercise that mimics the final sprint during events such as the 800-m run, 1,500-m speed skate, or Keirin (cycling race). Nine active young males performed a 120-s supramaximal cycling exercise consisting of 90 s of constant-workload cycling at a workload that corresponds to 110% peak oxygen uptake (VO(2peak)) followed by 30 s of maximal cycling. This exercise was preceded by 1) no warm-up (control), 2) a 10-min cycling warm-up at a workload of 40% VO(2peak) (moderate-intensity), or 3) a 5-min cycling warm-up at a workload of 80% VO(2peak) (high-intensity). Total work was matched between the two warm-up conditions. Both warm-ups increased 5-s peak (observed within 10 s at the beginning of maximal cycling) and 30-s mean power output during the final 30-s maximal cycling compared to no warm-up. Moreover, the high-intensity warm-up provided a greater peak (577±169 vs. 541±175 W, P=0.01) but not mean (482±109 vs. 470±135W, P=1.00) power output than the moderate-intensity warm-up. Both VO(2) during the 90-s constant workload cycling and the post-warm-up blood lactate concentration were higher following the high-intensity than moderate-intensity warm-up (all P≤0.05). We show that work-matched moderate- (~40% VO(2peak)) and high- (~80% VO(2peak)) intensity warm-ups both improve final sprint (~30 s) performance during the late stage of a 120-s supramaximal exercise bout, and that a high-intensity warm-up provides greater improvement of short-duration (<10 s) maximal sprinting performance. |
format | Online Article Text |
id | pubmed-6224842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Institute of Sport in Warsaw |
record_format | MEDLINE/PubMed |
spelling | pubmed-62248422018-11-16 Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling Fujii, Naoto Nishida, Yuya Ogawa, Takeshi Tanigawa, Satoru Nishiyasu, Takeshi Biol Sport Original Paper We tested the hypothesis that compared with a moderate-intensity warm-up, a work-matched high-intensity warm-up improves final-sprint power output during the last 30 s of a 120-s supramaximal exercise that mimics the final sprint during events such as the 800-m run, 1,500-m speed skate, or Keirin (cycling race). Nine active young males performed a 120-s supramaximal cycling exercise consisting of 90 s of constant-workload cycling at a workload that corresponds to 110% peak oxygen uptake (VO(2peak)) followed by 30 s of maximal cycling. This exercise was preceded by 1) no warm-up (control), 2) a 10-min cycling warm-up at a workload of 40% VO(2peak) (moderate-intensity), or 3) a 5-min cycling warm-up at a workload of 80% VO(2peak) (high-intensity). Total work was matched between the two warm-up conditions. Both warm-ups increased 5-s peak (observed within 10 s at the beginning of maximal cycling) and 30-s mean power output during the final 30-s maximal cycling compared to no warm-up. Moreover, the high-intensity warm-up provided a greater peak (577±169 vs. 541±175 W, P=0.01) but not mean (482±109 vs. 470±135W, P=1.00) power output than the moderate-intensity warm-up. Both VO(2) during the 90-s constant workload cycling and the post-warm-up blood lactate concentration were higher following the high-intensity than moderate-intensity warm-up (all P≤0.05). We show that work-matched moderate- (~40% VO(2peak)) and high- (~80% VO(2peak)) intensity warm-ups both improve final sprint (~30 s) performance during the late stage of a 120-s supramaximal exercise bout, and that a high-intensity warm-up provides greater improvement of short-duration (<10 s) maximal sprinting performance. Institute of Sport in Warsaw 2018-04-01 2018-09 /pmc/articles/PMC6224842/ /pubmed/30449939 http://dx.doi.org/10.5114/biolsport.2018.74633 Text en Copyright © Biology of Sport 2018 http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Fujii, Naoto Nishida, Yuya Ogawa, Takeshi Tanigawa, Satoru Nishiyasu, Takeshi Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title | Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title_full | Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title_fullStr | Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title_full_unstemmed | Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title_short | Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
title_sort | effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224842/ https://www.ncbi.nlm.nih.gov/pubmed/30449939 http://dx.doi.org/10.5114/biolsport.2018.74633 |
work_keys_str_mv | AT fujiinaoto effectsofworkmatchedmoderateandhighintensitywarmuponpoweroutputduring2minsupramaximalcycling AT nishidayuya effectsofworkmatchedmoderateandhighintensitywarmuponpoweroutputduring2minsupramaximalcycling AT ogawatakeshi effectsofworkmatchedmoderateandhighintensitywarmuponpoweroutputduring2minsupramaximalcycling AT tanigawasatoru effectsofworkmatchedmoderateandhighintensitywarmuponpoweroutputduring2minsupramaximalcycling AT nishiyasutakeshi effectsofworkmatchedmoderateandhighintensitywarmuponpoweroutputduring2minsupramaximalcycling |