Cargando…
Biofilm Inhibitory Abscisic Acid Derivatives from the Plant-Associated Dothideomycete Fungus, Roussoella sp.
Roussoella species are well recorded from both monocotyledons and dicotyledons. As part of a research program to discover biologically active compounds from plant-associated Dothideomycetes in Thailand, the strain Roussoella sp. (MFLUCC 17-2059), which represents an undescribed species, was isolated...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225182/ https://www.ncbi.nlm.nih.gov/pubmed/30200229 http://dx.doi.org/10.3390/molecules23092190 |
Sumario: | Roussoella species are well recorded from both monocotyledons and dicotyledons. As part of a research program to discover biologically active compounds from plant-associated Dothideomycetes in Thailand, the strain Roussoella sp. (MFLUCC 17-2059), which represents an undescribed species, was isolated from Clematis subumbellata Kurz, fermented in yeast-malt medium and explored for its secondary metabolite production. Bioassay-guided fractionation of the crude extract yielded the new abscisic acid derivative, roussoellenic acid (1), along with pestabacillin B (2), a related congener, and the cyclodipeptide, cyclo(S-Pro-S-Ile) (3). The structure of 1 was determined by 2D NMR spectroscopy and HR-ESIMS data analysis. Compounds 1 and 2 showed inhibitory activity on biofilm formation by Staphylococcus aureus. The biofilm formation of S. aureus was reduced to 34% at 16 µg/mL by roussoellenic acid (1), while pestabacillin B (2) only showed 36% inhibition at 256 µg/mL. In addition, compound 1 also had weak cytotoxic effects on L929 murine fibroblasts and human KB3-1 cancer cells. |
---|