Cargando…

Exploring Peptide–Solvent Interactions: A Computational Study

The dilemma of reconciling the contradictory evidence regarding the conformation of long solvated peptide chains is the so-called “reconciliation problem”. Clues regarding the stability of certain conformations likely lie in the electronic structure at the peptide–solvent interface, but the peptide–...

Descripción completa

Detalles Bibliográficos
Autor principal: Elghobashi-Meinhardt, Nadia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225229/
https://www.ncbi.nlm.nih.gov/pubmed/30223458
http://dx.doi.org/10.3390/molecules23092355
Descripción
Sumario:The dilemma of reconciling the contradictory evidence regarding the conformation of long solvated peptide chains is the so-called “reconciliation problem”. Clues regarding the stability of certain conformations likely lie in the electronic structure at the peptide–solvent interface, but the peptide–solvent interaction is not fully understood. Here, we study the influence of aqueous solvent on peptide conformations by using classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) energy calculations. The model systems include an 11-residue peptide, X [Formula: see text] A [Formula: see text] O [Formula: see text] (XAO), where X, A, and O denote diaminobutyric acid, alanine, and ornithine, respectively, and a 9-mer (Arg-Pro-Pro-Gly-Phe-Ser-Ala-Phe-Lys). Spectroscopic and MD data present conflicting evidence regarding the structure of XAO in water; some results indicate that XAO adopts a polyproline II (P [Formula: see text]) conformation, whereas other findings suggest that XAO explores a range of conformations. To investigate this contradiction, we present here the results of MD simulations of XAO and the 9-mer in aqueous solution, combined with QM/MM energy calculations.