Cargando…
Development of Kinase Inhibitors via Metal-Catalyzed C–H Arylation of 8-Alkyl-thiazolo[5,4-f]-quinazolin-9-ones Designed by Fragment-Growing Studies
Efficient metal catalyzed C–H arylation of 8-alkyl-thiazolo[5,4-f]-quinazolin-9-ones was explored for SAR studies. Application of this powerful chemical tool at the last stage of the synthesis of kinase inhibitors allowed the synthesis of arrays of molecules inspired by fragment-growing studies gene...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225322/ https://www.ncbi.nlm.nih.gov/pubmed/30158487 http://dx.doi.org/10.3390/molecules23092181 |
Sumario: | Efficient metal catalyzed C–H arylation of 8-alkyl-thiazolo[5,4-f]-quinazolin-9-ones was explored for SAR studies. Application of this powerful chemical tool at the last stage of the synthesis of kinase inhibitors allowed the synthesis of arrays of molecules inspired by fragment-growing studies generated by molecular modeling calculations. Among the potentially active compounds designed through this strategy, FC162 (4c) exhibits nanomolar IC(50) values against some kinases, and is the best candidate for the development as a DYRK kinase inhibitor. |
---|