Cargando…
Machine Learning for Drug-Target Interaction Prediction
Identifying drug-target interactions will greatly narrow down the scope of search of candidate medications, and thus can serve as the vital first step in drug discovery. Considering that in vitro experiments are extremely costly and time-consuming, high efficiency computational prediction methods co...
Autores principales: | Chen, Ruolan, Liu, Xiangrong, Jin, Shuting, Lin, Jiawei, Liu, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225477/ https://www.ncbi.nlm.nih.gov/pubmed/30200333 http://dx.doi.org/10.3390/molecules23092208 |
Ejemplares similares
-
LaGAT: link-aware graph attention network for drug–drug interaction prediction
por: Hong, Yue, et al.
Publicado: (2022) -
Application of Machine Learning for Drug–Target Interaction Prediction
por: Xu, Lei, et al.
Publicado: (2021) -
Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
por: Azlim Khan, Azwaar Khan, et al.
Publicado: (2023) -
Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
por: Bagherian, Maryam, et al.
Publicado: (2020) -
Recent development of machine learning models for the prediction of drug-drug interactions
por: Hong, Eujin, et al.
Publicado: (2023)