Cargando…

Amputee perception of prosthetic ankle stiffness during locomotion

BACKGROUND: Prosthetic feet are spring-like, and their stiffness critically affects the wearer’s stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Shepherd, Max K., Azocar, Alejandro F., Major, Matthew J., Rouse, Elliott J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225626/
https://www.ncbi.nlm.nih.gov/pubmed/30409168
http://dx.doi.org/10.1186/s12984-018-0432-5
Descripción
Sumario:BACKGROUND: Prosthetic feet are spring-like, and their stiffness critically affects the wearer’s stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in patients receiving a foot with suboptimal mechanics. To understand the resolution with which prostheses should be individually optimized, we sought to characterize below-knee prosthesis users’ psychophysical sensitivity to prosthesis stiffness. METHODS: We used a novel variable-stiffness ankle prosthesis to measure the repeatability of user-selected preferred stiffness, and implemented a psychophysical experiment to characterize the just noticeable difference of stiffness during locomotion. RESULTS: All eight subjects with below-knee amputation exhibited high repeatability in selecting their Preferred Stiffness (mean coefficient of variation: 14.2 ± 1.7%) and were able to correctly identify a 7.7 ± 1.3% change in ankle stiffness (with 75% accuracy). CONCLUSIONS: This high sensitivity suggests prosthetic foot stiffness should be tuned with a high degree of precision on an individual basis. These results also highlight the need for a pairing of new robotic prescription tools and mechanical characterizations of prosthetic feet.