Cargando…
Generating realistic scaled complex networks
Research on generative models plays a central role in the emerging field of network science, studying how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networ...
Autores principales: | Staudt, Christian L., Hamann, Michael, Gutfraind, Alexander, Safro, Ilya, Meyerhenke, Henning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225971/ https://www.ncbi.nlm.nih.gov/pubmed/30533515 http://dx.doi.org/10.1007/s41109-017-0054-z |
Ejemplares similares
-
CBAG: Conditional biomedical abstract generation
por: Sybrandt, Justin, et al.
Publicado: (2021) -
Optimizing Topological Cascade Resilience Based on the Structure of Terrorist Networks
por: Gutfraind, Alexander
Publicado: (2010) -
Scaling up complex interventions: insights from a realist synthesis
por: Willis, Cameron D., et al.
Publicado: (2016) -
Ensembles of realistic power distribution networks
por: Meyur, Rounak, et al.
Publicado: (2022) -
Generation of Realistic Gene Regulatory Networks by Enriching for Feed-Forward Loops
por: Zhivkoplias, Erik K., et al.
Publicado: (2022)