Cargando…
Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks
This paper develops a new machine vision framework for efficient detection and classification of manufacturing defects in metal boxes. Previous techniques, which are based on either visual inspection or on hand-crafted features, are both inaccurate and time consuming. In this paper, we show that by...
Autores principales: | Essid, Oumayma, Laga, Hamid, Samir, Chafik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226149/ https://www.ncbi.nlm.nih.gov/pubmed/30412635 http://dx.doi.org/10.1371/journal.pone.0203192 |
Ejemplares similares
-
Feature-based volumetric defect classification in metal additive manufacturing
por: Poudel, Arun, et al.
Publicado: (2022) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Takiyama, Hirotoshi, et al.
Publicado: (2018) -
Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
por: Zang, Ke, et al.
Publicado: (2021) -
Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
por: Saito, Hiroaki, et al.
Publicado: (2020) -
Study on automatic detection and classification of breast nodule using deep convolutional neural network system
por: Wang, Feiqian, et al.
Publicado: (2020)