Cargando…
Cellulose-binding activity of a 21-kDa endo-ß-1,4-glucanase lacking cellulose-binding domain and its synergy with other cellulases in the digestive fluid of Aplysia kurodai
Endo-ß-1,4-glucanase AkEG21 belonging to glycosyl hydrolase family 45 (GHF45) is the most abundant cellulase in the digestive fluid of sea hare (Aplysia kurodai). The specific activity of this 21-kDa enzyme is considerably lower than those of other endo ß-1,4-glucanases in the digestive fluid of A....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226162/ https://www.ncbi.nlm.nih.gov/pubmed/30412581 http://dx.doi.org/10.1371/journal.pone.0205915 |
Sumario: | Endo-ß-1,4-glucanase AkEG21 belonging to glycosyl hydrolase family 45 (GHF45) is the most abundant cellulase in the digestive fluid of sea hare (Aplysia kurodai). The specific activity of this 21-kDa enzyme is considerably lower than those of other endo ß-1,4-glucanases in the digestive fluid of A. kurodai, therefore its role in whole cellulose hydrolysis by sea hare is still uncertain. Although AkEG21 has a catalytic domain without a cellulose binding domain, it demonstrated stable binding to cellulose fibers, similar to that of fungal cellobiohydrolase (CBH) 1 and CBH 2, which is strongly inhibited by cellohexaose, suggesting the involvement of the catalytic site in cellulose binding. Cellulose-bound AkEG21 hydrolyzed cellulose to cellobiose, cellotriose and cellotetraose, but could not digest an external substrate, azo-carboxymethyl cellulose. Cellulose hydrolysis was considerably stimulated by the synergistic action of cellulose-bound AkEG21 and AkEG45, another ß-1,4-endoglucanase present in the digestive fluid of sea hare; however no synergy in carboxymethylcellulose hydrolysis was observed. When AkEG21 was removed from the digestive fluid by immunoprecipitation, the cellulose hydrolyzing activity of the fluid was significantly reduced, indicating a critical role of AkEG21 in cellulose hydrolysis by A. kurodai. These findings suggest that AkEG21 is a processive endoglucanase functionally equivalent to the CBH, which provides a CBH-independent mechanism for the mollusk to digest seaweed cellulose to glucose. |
---|