Cargando…
Design and use of a novel substrate for simple, rapid, and specific early detection of anthrax infection
Bacillus anthracis is a major biological warfare threat. The inhalation form of infection can kill quickly. While antibiotic treatment is effective, if diagnosis is delayed, the rapidly produced toxin may already be present in lethal amounts. This report describes a fast, sensitive, specific and acc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226181/ https://www.ncbi.nlm.nih.gov/pubmed/30412638 http://dx.doi.org/10.1371/journal.pone.0207084 |
Sumario: | Bacillus anthracis is a major biological warfare threat. The inhalation form of infection can kill quickly. While antibiotic treatment is effective, if diagnosis is delayed, the rapidly produced toxin may already be present in lethal amounts. This report describes a fast, sensitive, specific and accurate method for detection of active infection by Bacillus anthracis in plasma. One of the virulence factors, anthrax lethal factor, is an endopeptidase present in blood early in the infection. However, the use of peptidic substrates to detect endopetidases is problematic in plasma due to the presence of other proteases and the likelihood of nonspecific cleavage of the substrate. The fluorescently labeled peptide substrate MAPKKide Plus designed in this study is not cleaved by plasma proteases and thus is specific for lethal factor. Three detection strategies are described. Two include enrichment by capture from plasma using lethal factor antibody-coated microtiter plates or similarly coated immuno-tubes. The captured lethal factor is exposed to the MAPKKide Plus, and the amount of cleavage is determined either by HPLC or microplate reader. Concentration of lethal factor using the antibody-coated plates aplnd HPLC allows for detection of less than 5 pg lethal factor/ml of neat plasma after 2 hours of incubation. Using antibody-coated immuno-tubes, 20 pg lethal factor/ml plasma can be detected in 5 hours by a simple end point read of fluorescence in a microplate reader. For a third strategy, the substrate is added directly to diluted plasma, and cleavage is monitored by the increase in fluorescence as a function of time. The limit of detection by this simple method is 25 ng lethal factor/ml of plasma in 15 minutes, 5 ng/ml after 45 minutes, and <1 ng lethal factor/ml of plasma after 5 hours. |
---|