Cargando…
Changes in canine serum N-glycosylation as a result of infection with the heartworm parasite Dirofilaria immitis
Filariases are diseases caused by infection with filarial nematodes and transmitted by insect vectors. The filarial roundworm Dirofilaria immitis causes heartworm disease in dogs and other carnivores. D. immitis is closely related to Onchocerca volvulus, Wuchereria bancrofti and Brugia malayi, which...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226445/ https://www.ncbi.nlm.nih.gov/pubmed/30413744 http://dx.doi.org/10.1038/s41598-018-35038-7 |
Sumario: | Filariases are diseases caused by infection with filarial nematodes and transmitted by insect vectors. The filarial roundworm Dirofilaria immitis causes heartworm disease in dogs and other carnivores. D. immitis is closely related to Onchocerca volvulus, Wuchereria bancrofti and Brugia malayi, which cause onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) in humans and are neglected tropical diseases. Serum N-glycosylation is very sensitive to both pathological infections and changes in mammalian biology due to normal aging or lifestyle choices. Here, we report significant changes in the serum N-glycosylation profiles of dogs infected with D. immitis. Our data derive from analysis of serum from dogs with established patent infections and from a longitudinal infection study. Overall, galactosylation and core fucosylation increase, while sialylation decreases in infected dog sera. We also identify individual glycan structures that change significantly in their relative abundance during infection. Notably, the abundance of the most dominant N-glycan in canine serum (biantennary, disialylated A2G2S2) decreases by over 10 percentage points during the first 6 months of infection in each dog analyzed. This is the first longitudinal study linking changes in mammalian serum N-glycome to progression of a parasitic infection. |
---|