Cargando…

First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay

Modulated electro-hyperthermia (mEHT) is a form of hyperthermia used in the treatment of cancer. It is a variation that relies on a particular form of enhanced selectivity to enable more effective cancerous cell death yet maintaining the integrity of healthy non-cancerous cells. It is yet to success...

Descripción completa

Detalles Bibliográficos
Autores principales: McDonald, Marjorie, Corde, Stéphanie, Lerch, Michael, Rosenfeld, Anatoly, Jackson, Michael, Tehei, Moeava
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226525/
https://www.ncbi.nlm.nih.gov/pubmed/30413777
http://dx.doi.org/10.1038/s41598-018-34712-0
Descripción
Sumario:Modulated electro-hyperthermia (mEHT) is a form of hyperthermia used in the treatment of cancer. It is a variation that relies on a particular form of enhanced selectivity to enable more effective cancerous cell death yet maintaining the integrity of healthy non-cancerous cells. It is yet to successfully make the major step into the wider medical community despite several encouraging trials. In this study, we investigate mEHT from an in vitro perspective. We demonstrate a supra-additive effect on 9 L gliosarcoma cells when exposed to mEHT in combination with MV X-ray radiation. The supra-additive effect is hypothesized to be induced by the mEHT mechanism that in turn causes apoptosis, membrane damage and an increase in rate of cell growth. This proves to be extremely advantageous in the case of the aggressive 9 L cell line as it is known to be radioresistant. However, the universal success of this multimodal treatment does not appear to be positive for all cell lines and requires further research. Due to the fundamental approach taken in this research, our results also provide a new prospect for mEHT to be a tool for sterilizing otherwise radioresistant cancers.