Cargando…
Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python
Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex models may take a long time to run, and it can be difficult to fully capture t...
Autores principales: | Irvine, Michael A., Hollingsworth, T. Déirdre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227249/ https://www.ncbi.nlm.nih.gov/pubmed/29884470 http://dx.doi.org/10.1016/j.epidem.2018.05.009 |
Ejemplares similares
-
ABC-SysBio—approximate Bayesian computation in Python with GPU support
por: Liepe, Juliane, et al.
Publicado: (2010) -
AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning
por: González-Vanegas, Wilson, et al.
Publicado: (2019) -
ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison
por: Mertens, Ulf Kai, et al.
Publicado: (2018) -
Bayesian analysis with Python: unleash the power and flexibility of the Bayesian framework
por: Martin, Osvaldo
Publicado: (2016) -
The use of mixture density networks in the emulation of complex epidemiological individual-based models
por: Davis, Christopher N., et al.
Publicado: (2020)