Cargando…
From statistical inference to a differential learning rule for stochastic neural networks
Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that relies only on delayed activity correlations, and...
Autores principales: | Saglietti, Luca, Gerace, Federica, Ingrosso, Alessandro, Baldassi, Carlo, Zecchina, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227809/ https://www.ncbi.nlm.nih.gov/pubmed/30443331 http://dx.doi.org/10.1098/rsfs.2018.0033 |
Ejemplares similares
-
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
por: Alemi, Alireza, et al.
Publicado: (2015) -
Shaping the learning landscape in neural networks around wide flat minima
por: Baldassi, Carlo, et al.
Publicado: (2020) -
Efficiency of quantum vs. classical annealing in nonconvex learning problems
por: Baldassi, Carlo, et al.
Publicado: (2018) -
Efficient supervised learning in networks with binary synapses
por: Baldassi, Carlo, et al.
Publicado: (2007) -
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
por: Alemi-Neissi, Alireza, et al.
Publicado: (2012)