Cargando…

Is callose required for silicification in plants?

The cell wall polymer callose catalyses the formation of silica in vitro and is heavily implicated in biological silicification in Equisetum (horsetail) and Arabidopsis (thale cress) in vivo. Callose, a β-1,3-glucan, is an ideal partner for silicification, because its amorphous structure and ephemer...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerriero, Gea, Stokes, Ian, Exley, Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227863/
https://www.ncbi.nlm.nih.gov/pubmed/30282746
http://dx.doi.org/10.1098/rsbl.2018.0338
Descripción
Sumario:The cell wall polymer callose catalyses the formation of silica in vitro and is heavily implicated in biological silicification in Equisetum (horsetail) and Arabidopsis (thale cress) in vivo. Callose, a β-1,3-glucan, is an ideal partner for silicification, because its amorphous structure and ephemeral nature provide suitable microenvironments to support the condensation of silicic acid into silica. Herein, using scanning electron microscopy, immunohistochemistry and fluorescence, we provide further evidence of the cooperative nature of callose and silica in biological silicification in rice, an important crop plant and known silica accumulator. These new data along with recently published research enable us to propose a model to describe the intracellular events that together determine callose-driven biological silicification.