Cargando…

Quantum imploding scalar fields

The d’Alembertian □ϕ = 0 has the solution ϕ = f(v)/r, where f is a function of a null coordinate v, and this allows creation of a divergent singularity out of nothing. In scalar-Einstein theory a similar situation arises both for the scalar field and also for curvature invariants such as the Ricci s...

Descripción completa

Detalles Bibliográficos
Autor principal: Roberts, Mark D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227929/
https://www.ncbi.nlm.nih.gov/pubmed/30473821
http://dx.doi.org/10.1098/rsos.180692
_version_ 1783370006433628160
author Roberts, Mark D.
author_facet Roberts, Mark D.
author_sort Roberts, Mark D.
collection PubMed
description The d’Alembertian □ϕ = 0 has the solution ϕ = f(v)/r, where f is a function of a null coordinate v, and this allows creation of a divergent singularity out of nothing. In scalar-Einstein theory a similar situation arises both for the scalar field and also for curvature invariants such as the Ricci scalar. Here what happens in canonical quantum gravity is investigated. Two minispace Hamiltonian systems are set up: extrapolation and approximation of these indicates that the quantum mechanical wave function can be finite at the origin.
format Online
Article
Text
id pubmed-6227929
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-62279292018-11-23 Quantum imploding scalar fields Roberts, Mark D. R Soc Open Sci Physics The d’Alembertian □ϕ = 0 has the solution ϕ = f(v)/r, where f is a function of a null coordinate v, and this allows creation of a divergent singularity out of nothing. In scalar-Einstein theory a similar situation arises both for the scalar field and also for curvature invariants such as the Ricci scalar. Here what happens in canonical quantum gravity is investigated. Two minispace Hamiltonian systems are set up: extrapolation and approximation of these indicates that the quantum mechanical wave function can be finite at the origin. The Royal Society 2018-10-10 /pmc/articles/PMC6227929/ /pubmed/30473821 http://dx.doi.org/10.1098/rsos.180692 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Physics
Roberts, Mark D.
Quantum imploding scalar fields
title Quantum imploding scalar fields
title_full Quantum imploding scalar fields
title_fullStr Quantum imploding scalar fields
title_full_unstemmed Quantum imploding scalar fields
title_short Quantum imploding scalar fields
title_sort quantum imploding scalar fields
topic Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227929/
https://www.ncbi.nlm.nih.gov/pubmed/30473821
http://dx.doi.org/10.1098/rsos.180692
work_keys_str_mv AT robertsmarkd quantumimplodingscalarfields