Cargando…
Enrichment of lithium from salt lake brine by forward osmosis
Forward osmosis (FO) is a concentration process based on the natural phenomena of osmosis. It is considered a breakthrough technology that can be potentially used for concentrating solutions and suspensions. The diluted nature of brine restricts the treatment technologies that can be applied. Then,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227972/ https://www.ncbi.nlm.nih.gov/pubmed/30473842 http://dx.doi.org/10.1098/rsos.180965 |
Sumario: | Forward osmosis (FO) is a concentration process based on the natural phenomena of osmosis. It is considered a breakthrough technology that can be potentially used for concentrating solutions and suspensions. The diluted nature of brine restricts the treatment technologies that can be applied. Then, brine concentration by FO could represent a new emerging technology enabling the application of a wider range of treatment alternatives. The performance of concentrated brine depending upon FO membranes was studied at normal temperature and pressure in this research. Cellulose triacetates on radio-frequency-weldable non-woven support (CTA-NW) and a thin-film composite with embedded polyester screen support (TFC-ES) were compared; and their orientations were considered. The brine was from Chaerhan Salt Lake after extracting potassium as the feed solution, NaCl solution or MgCl(2) solution as the draw solution. The results indicated that CTA-NW exhibited better concentration performance than TFC-ES, while the water fluxes of the two membranes were exactly the opposite. In the case of CTA-NW in active layer facing feed solution orientation with MgCl(2) as the draw solution, the concentration factor of Li(+) was nearly 3.0. Quantitative structure–activity relationship of FO membranes and concentration characteristics was correlated, based on results of SEM, FTIR and contact angles studies. The concentration performance could be mainly attributed to the porosity and the thickness of FO membranes; while the water flux was dependent on the hydrophily of FO membrane surface. |
---|