Cargando…
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
Classification of motor imagery (MI) electroencephalogram (EEG) plays a vital role in brain-computer interface (BCI) systems. Recent research has shown that nonlinear classification algorithms perform better than their linear counterparts, but most of them cannot extract sufficient significant infor...
Autores principales: | She, Qingshan, Chen, Kang, Ma, Yuliang, Nguyen, Thinh, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230412/ https://www.ncbi.nlm.nih.gov/pubmed/30510569 http://dx.doi.org/10.1155/2018/9593682 |
Ejemplares similares
-
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Robust Sparse Representation and Multiclass Support Matrix Machines for the Classification of Motor Imagery EEG Signals
Publicado: (2019) -
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Motor imagery classification using sparse representations: an exploratory study
por: de Menezes, José Antonio Alves, et al.
Publicado: (2023) -
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification
por: She, Qingshan, et al.
Publicado: (2016)