Cargando…
Pixel-Label-Based Segmentation of Cross-Sectional Brain MRI Using Simplified SegNet Architecture-Based CNN
Using deep neural networks for segmenting an MRI image of heterogeneously distributed pixels into a specific class assigning a label to each pixel is the concept of the proposed approach. This approach facilitates the application of the segmentation process on a preprocessed MRI image, with a traine...
Autores principales: | Khagi, Bijen, Kwon, Goo-Rak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230419/ https://www.ncbi.nlm.nih.gov/pubmed/30510671 http://dx.doi.org/10.1155/2018/3640705 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023)