Cargando…

Phenotypic Nonspecificity as the Result of Limited Specificity of Transcription Factor Function

Drosophila transcription factor (TF) function is phenotypically nonspecific. Phenotypic nonspecificity is defined as one phenotype being induced or rescued by multiple TFs. To explain this unexpected result, a hypothetical world of limited specificity is explored where all TFs have unique random dis...

Descripción completa

Detalles Bibliográficos
Autor principal: Percival-Smith, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230420/
https://www.ncbi.nlm.nih.gov/pubmed/30510805
http://dx.doi.org/10.1155/2018/7089109
Descripción
Sumario:Drosophila transcription factor (TF) function is phenotypically nonspecific. Phenotypic nonspecificity is defined as one phenotype being induced or rescued by multiple TFs. To explain this unexpected result, a hypothetical world of limited specificity is explored where all TFs have unique random distributions along the genome due to low information content of DNA sequence recognition and somewhat promiscuous cooperative interactions with other TFs. Transcription is an emergent property of these two conditions. From this model, explicit predictions are made. First, many more cases of TF nonspecificity are expected when examined. Second, the genetic analysis of regulatory sequences should uncover cis-element bypass and, third, genetic analysis of TF function should generally uncover differential pleiotropy. In addition, limited specificity provides evolutionary opportunity and explains the inefficiency of expression analysis in identifying genes required for biological processes.