Cargando…
A deep learning approach for (18)F-FDG PET attenuation correction
BACKGROUND: To develop and evaluate the feasibility of a data-driven deep learning approach (deepAC) for positron-emission tomography (PET) image attenuation correction without anatomical imaging. A PET attenuation correction pipeline was developed utilizing deep learning to generate continuously va...
Autores principales: | Liu, Fang, Jang, Hyungseok, Kijowski, Richard, Zhao, Gengyan, Bradshaw, Tyler, McMillan, Alan B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230542/ https://www.ncbi.nlm.nih.gov/pubmed/30417316 http://dx.doi.org/10.1186/s40658-018-0225-8 |
Ejemplares similares
-
Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images
por: Bradshaw, Tyler J., et al.
Publicado: (2018) -
Impact of attenuation correction on clinical [(18)F]FDG brain PET in combined PET/MRI
por: Werner, P., et al.
Publicado: (2016) -
Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with Generative Adversarial Networks
por: Armanious, Karim, et al.
Publicado: (2020) -
Impact of improved attenuation correction on 18F-FDG PET/MR hybrid imaging of the heart
por: Lindemann, Maike E., et al.
Publicado: (2019) -
Measurement Repeatability of (18)F-FDG PET/CT Versus (18)F-FDG PET/MRI in Solid Tumors of the Pelvis
por: Fraum, Tyler J., et al.
Publicado: (2019)