Cargando…
Neural Reconstruction Integrity: A Metric for Assessing the Connectivity Accuracy of Reconstructed Neural Networks
Neuroscientists are actively pursuing high-precision maps, or graphs consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in th...
Autores principales: | Reilly, Elizabeth P., Garretson, Jeffrey S., Gray Roncal, William R., Kleissas, Dean M., Wester, Brock A., Chevillet, Mark A., Roos, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231021/ https://www.ncbi.nlm.nih.gov/pubmed/30455638 http://dx.doi.org/10.3389/fninf.2018.00074 |
Ejemplares similares
-
The Brain Observatory Storage Service and Database (BossDB): A Cloud-Native Approach for Petascale Neuroscience Discovery
por: Hider, Robert, et al.
Publicado: (2022) -
An automated images-to-graphs framework for high resolution connectomics
por: Gray Roncal, William R., et al.
Publicado: (2015) -
Bayesian reconstruction of memories stored in neural networks from their connectivity
por: Goldt, Sebastian, et al.
Publicado: (2023) -
Application of Neural Networks for Energy Reconstruction
por: Damgov, J., et al.
Publicado: (2000) -
An Integrated Toolkit for Extensible and Reproducible Neuroscience
por: Matelsky, Jordan K, et al.
Publicado: (2021)