Cargando…
Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231223/ https://www.ncbi.nlm.nih.gov/pubmed/30443184 http://dx.doi.org/10.7150/ijbs.26962 |
_version_ | 1783370180547575808 |
---|---|
author | Dou, Xixi Chen, Lichan Lei, Mingjuan Zellmer, Lucas Jia, Qingwen Ling, Peixue He, Yan Yang, Wenxiu Liao, Dezhong Joshua |
author_facet | Dou, Xixi Chen, Lichan Lei, Mingjuan Zellmer, Lucas Jia, Qingwen Ling, Peixue He, Yan Yang, Wenxiu Liao, Dezhong Joshua |
author_sort | Dou, Xixi |
collection | PubMed |
description | Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes. |
format | Online Article Text |
id | pubmed-6231223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-62312232018-11-15 Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation Dou, Xixi Chen, Lichan Lei, Mingjuan Zellmer, Lucas Jia, Qingwen Ling, Peixue He, Yan Yang, Wenxiu Liao, Dezhong Joshua Int J Biol Sci Review Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes. Ivyspring International Publisher 2018-10-19 /pmc/articles/PMC6231223/ /pubmed/30443184 http://dx.doi.org/10.7150/ijbs.26962 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Review Dou, Xixi Chen, Lichan Lei, Mingjuan Zellmer, Lucas Jia, Qingwen Ling, Peixue He, Yan Yang, Wenxiu Liao, Dezhong Joshua Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title | Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title_full | Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title_fullStr | Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title_full_unstemmed | Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title_short | Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation |
title_sort | evaluating the remote control of programmed cell death, with or without a compensatory cell proliferation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231223/ https://www.ncbi.nlm.nih.gov/pubmed/30443184 http://dx.doi.org/10.7150/ijbs.26962 |
work_keys_str_mv | AT douxixi evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT chenlichan evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT leimingjuan evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT zellmerlucas evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT jiaqingwen evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT lingpeixue evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT heyan evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT yangwenxiu evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation AT liaodezhongjoshua evaluatingtheremotecontrolofprogrammedcelldeathwithorwithoutacompensatorycellproliferation |