Cargando…
Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations
OBJECTIVES: To non-invasively evaluate by computational fluid dynamic (CFD) analysis the physiology and rheology of aortoiliac bifurcation disease at different angles and different stent configurations. MATERIAL AND METHODS: For the analysis, we considered a physiologic model of abdominal aorta with...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231302/ https://www.ncbi.nlm.nih.gov/pubmed/30425950 http://dx.doi.org/10.2478/jtim-2018-0020 |
_version_ | 1783370194524045312 |
---|---|
author | Rigatelli, Gianluca Zuin, Marco Dell’Avvocata, Fabio Nanjundappa, Aravinda Daggubati, Ramesh Nguyen, Thach |
author_facet | Rigatelli, Gianluca Zuin, Marco Dell’Avvocata, Fabio Nanjundappa, Aravinda Daggubati, Ramesh Nguyen, Thach |
author_sort | Rigatelli, Gianluca |
collection | PubMed |
description | OBJECTIVES: To non-invasively evaluate by computational fluid dynamic (CFD) analysis the physiology and rheology of aortoiliac bifurcation disease at different angles and different stent configurations. MATERIAL AND METHODS: For the analysis, we considered a physiologic model of abdominal aorta with an iliac bifurcation set at 30°, 45° and 70° without stenosis. Subsequently, a bilateral ostial common iliac stenosis of 80% was considered for each type of bifurcation. For the stent simulation, we reconstructed Zilver vascular self-expanding (Zilver; Cook, Bloomington, MN) and Palmaz Genesis Peripheral (Cordis, Miami, FL) stents. RESULTS: The physiologic model, across the different angles, static pressure, Reynolds number and stream function, were lower for the 30° bifurcation angle with a gradient from 70° to 30° angles, whereas all the other parameters were inversely higher. After stenting, all the fluid parameters decreased homogenously independent of the stent type, maintaining a gradient in favour of 30° compared to 45° and 70° angles. The absolute greater deviation from physiology was observed for low kissing when self-expandable stents were used across all angles; in particular, the wall shear stress was high at at 45° angle. CONCLUSION: Bifurcation angle deeply impacts the physiology of aortoiliac bifurcations, which are used to predict the fluid dynamic profile after stenting. CFD, having the potential to be derived both from computed tomography scan or invasive angiography, appears to be an ideal tool to predict fluid dynamic profile before and after stenting in aortoiliac bifurcation. |
format | Online Article Text |
id | pubmed-6231302 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Sciendo |
record_format | MEDLINE/PubMed |
spelling | pubmed-62313022018-11-13 Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations Rigatelli, Gianluca Zuin, Marco Dell’Avvocata, Fabio Nanjundappa, Aravinda Daggubati, Ramesh Nguyen, Thach J Transl Int Med Original Article OBJECTIVES: To non-invasively evaluate by computational fluid dynamic (CFD) analysis the physiology and rheology of aortoiliac bifurcation disease at different angles and different stent configurations. MATERIAL AND METHODS: For the analysis, we considered a physiologic model of abdominal aorta with an iliac bifurcation set at 30°, 45° and 70° without stenosis. Subsequently, a bilateral ostial common iliac stenosis of 80% was considered for each type of bifurcation. For the stent simulation, we reconstructed Zilver vascular self-expanding (Zilver; Cook, Bloomington, MN) and Palmaz Genesis Peripheral (Cordis, Miami, FL) stents. RESULTS: The physiologic model, across the different angles, static pressure, Reynolds number and stream function, were lower for the 30° bifurcation angle with a gradient from 70° to 30° angles, whereas all the other parameters were inversely higher. After stenting, all the fluid parameters decreased homogenously independent of the stent type, maintaining a gradient in favour of 30° compared to 45° and 70° angles. The absolute greater deviation from physiology was observed for low kissing when self-expandable stents were used across all angles; in particular, the wall shear stress was high at at 45° angle. CONCLUSION: Bifurcation angle deeply impacts the physiology of aortoiliac bifurcations, which are used to predict the fluid dynamic profile after stenting. CFD, having the potential to be derived both from computed tomography scan or invasive angiography, appears to be an ideal tool to predict fluid dynamic profile before and after stenting in aortoiliac bifurcation. Sciendo 2018-10-09 /pmc/articles/PMC6231302/ /pubmed/30425950 http://dx.doi.org/10.2478/jtim-2018-0020 Text en © 2018 Gianluca Rigatelli, Marco Zuin, Fabio Dell’Avvocata, Aravinda Nanjundappa, Ramesh Daggubati, Thach Nguyen, published by Sciendo http://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. |
spellingShingle | Original Article Rigatelli, Gianluca Zuin, Marco Dell’Avvocata, Fabio Nanjundappa, Aravinda Daggubati, Ramesh Nguyen, Thach Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title | Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title_full | Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title_fullStr | Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title_full_unstemmed | Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title_short | Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations |
title_sort | non-invasive evaluation of fluid dynamic of aortoiliac atherosclerotic disease: impact of bifurcation angle and different stent configurations |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231302/ https://www.ncbi.nlm.nih.gov/pubmed/30425950 http://dx.doi.org/10.2478/jtim-2018-0020 |
work_keys_str_mv | AT rigatelligianluca noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations AT zuinmarco noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations AT dellavvocatafabio noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations AT nanjundappaaravinda noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations AT daggubatiramesh noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations AT nguyenthach noninvasiveevaluationoffluiddynamicofaortoiliacatheroscleroticdiseaseimpactofbifurcationangleanddifferentstentconfigurations |