Cargando…
Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma
Lung cancer is the second most common cancer in the United States and the leading cause of mortality in cancer patients. Biomarkers predicting survival of patients with lung cancer have a profound effect on patient prognosis and treatment. However, predictive biomarkers for survival and their releva...
Autores principales: | Cho, Han-Jun, Lee, Soonchul, Ji, Young Geon, Lee, Dong Hyeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231670/ https://www.ncbi.nlm.nih.gov/pubmed/30419062 http://dx.doi.org/10.1371/journal.pone.0207204 |
Ejemplares similares
-
Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models
por: Xia, Kaide, et al.
Publicado: (2023) -
Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma
por: Lu, Jiameng, et al.
Publicado: (2022) -
Mutation-Derived Long Noncoding RNA Signature Predicts Survival in Lung Adenocarcinoma
por: Yang, Longjun, et al.
Publicado: (2022) -
The Association of EGFR Mutations with Stage at Diagnosis in Lung Adenocarcinomas
por: Cho, Jaeyoung, et al.
Publicado: (2016) -
Case of sclerosing pneumocytoma combined with a typical carcinoid and pulmonary adenocarcinoma in different lobes
por: Cho, Hwa Jin, et al.
Publicado: (2017)