Cargando…
A Patient-Facing Diabetes Dashboard Embedded in a Patient Web Portal: Design Sprint and Usability Testing
BACKGROUND: Health apps and Web-based interventions designed for patients with diabetes offer novel and scalable approaches to engage patients and improve outcomes. However, careful attention to the design and usability of these apps and Web-based interventions is essential to reduce the barriers to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231745/ https://www.ncbi.nlm.nih.gov/pubmed/30249579 http://dx.doi.org/10.2196/humanfactors.9569 |
Sumario: | BACKGROUND: Health apps and Web-based interventions designed for patients with diabetes offer novel and scalable approaches to engage patients and improve outcomes. However, careful attention to the design and usability of these apps and Web-based interventions is essential to reduce the barriers to engagement and maximize use. OBJECTIVE: The aim of this study was to apply design sprint methodology paired with mixed-methods, task-based usability testing to design and evaluate an innovative, patient-facing diabetes dashboard embedded in an existing patient portal and integrated into an electronic health record. METHODS: We applied a 5-day design sprint methodology developed by Google Ventures (Alphabet Inc, Mountain View, CA) to create our initial dashboard prototype. We identified recommended strategies from the literature for using patient-facing technologies to enhance patient activation and designed a dashboard functionality to match each strategy. We then conducted a mixed-methods, task-based usability assessment of dashboard prototypes with individual patients. Measures included validated metrics of task performance on 5 common and standardized tasks, semistructured interviews, and a validated usability satisfaction questionnaire. After each round of usability testing, we revised the dashboard prototype in response to usability findings before the next round of testing until the majority of participants successfully completed tasks, expressed high satisfaction, and identified no new usability concerns (ie, stop criterion was met). RESULTS: The sample (N=14) comprised 5 patients in round 1, 3 patients in round 2, and 6 patients in round 3, at which point we reached our stop criterion. The participants’ mean age was 63 years (range 45-78 years), 57% (8/14) were female, and 50% (7/14) were white. Our design sprint yielded an initial patient-facing diabetes dashboard prototype that displayed and summarized 5 measures of patients’ diabetes health status (eg, hemoglobin A(1c)). The dashboard used graphics to visualize and summarize health data and reinforce understanding, incorporated motivational strategies (eg, social comparisons and gamification), and provided educational resources and secure-messaging capability. More than 80% of participants were able to successfully complete all 5 tasks using the final prototype. Interviews revealed usability concerns with design, the efficiency of use, and content and terminology, which led to improvements. Overall satisfaction (0=worst and 7=best) improved from the initial to the final prototype (mean 5.8, SD 0.4 vs mean 6.7, SD 0.5). CONCLUSIONS: Our results demonstrate the utility of the design sprint methodology paired with mixed-methods, task-based usability testing to efficiently and effectively design a patient-facing, Web-based diabetes dashboard that is satisfying for patients to use. |
---|