Cargando…
Fast-backward replay of sequentially memorized items in humans
Storing temporal sequences of events (i.e., sequence memory) is fundamental to many cognitive functions. However, it is unknown how the sequence order information is maintained and represented in working memory and its behavioral significance, particularly in human subjects. We recorded electroencep...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231774/ https://www.ncbi.nlm.nih.gov/pubmed/30334735 http://dx.doi.org/10.7554/eLife.35164 |
_version_ | 1783370295733649408 |
---|---|
author | Huang, Qiaoli Jia, Jianrong Han, Qiming Luo, Huan |
author_facet | Huang, Qiaoli Jia, Jianrong Han, Qiming Luo, Huan |
author_sort | Huang, Qiaoli |
collection | PubMed |
description | Storing temporal sequences of events (i.e., sequence memory) is fundamental to many cognitive functions. However, it is unknown how the sequence order information is maintained and represented in working memory and its behavioral significance, particularly in human subjects. We recorded electroencephalography (EEG) in combination with a temporal response function (TRF) method to dissociate item-specific neuronal reactivations. We demonstrate that serially remembered items are successively reactivated during memory retention. The sequential replay displays two interesting properties compared to the actual sequence. First, the item-by-item reactivation is compressed within a 200 – 400 ms window, suggesting that external events are associated within a plasticity-relevant window to facilitate memory consolidation. Second, the replay is in a temporally reversed order and is strongly related to the recency effect in behavior. This fast-backward replay, previously revealed in rat hippocampus and demonstrated here in human cortical activities, might constitute a general neural mechanism for sequence memory and learning. |
format | Online Article Text |
id | pubmed-6231774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-62317742018-11-16 Fast-backward replay of sequentially memorized items in humans Huang, Qiaoli Jia, Jianrong Han, Qiming Luo, Huan eLife Neuroscience Storing temporal sequences of events (i.e., sequence memory) is fundamental to many cognitive functions. However, it is unknown how the sequence order information is maintained and represented in working memory and its behavioral significance, particularly in human subjects. We recorded electroencephalography (EEG) in combination with a temporal response function (TRF) method to dissociate item-specific neuronal reactivations. We demonstrate that serially remembered items are successively reactivated during memory retention. The sequential replay displays two interesting properties compared to the actual sequence. First, the item-by-item reactivation is compressed within a 200 – 400 ms window, suggesting that external events are associated within a plasticity-relevant window to facilitate memory consolidation. Second, the replay is in a temporally reversed order and is strongly related to the recency effect in behavior. This fast-backward replay, previously revealed in rat hippocampus and demonstrated here in human cortical activities, might constitute a general neural mechanism for sequence memory and learning. eLife Sciences Publications, Ltd 2018-10-18 /pmc/articles/PMC6231774/ /pubmed/30334735 http://dx.doi.org/10.7554/eLife.35164 Text en © 2018, Huang et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Huang, Qiaoli Jia, Jianrong Han, Qiming Luo, Huan Fast-backward replay of sequentially memorized items in humans |
title | Fast-backward replay of sequentially memorized items in humans |
title_full | Fast-backward replay of sequentially memorized items in humans |
title_fullStr | Fast-backward replay of sequentially memorized items in humans |
title_full_unstemmed | Fast-backward replay of sequentially memorized items in humans |
title_short | Fast-backward replay of sequentially memorized items in humans |
title_sort | fast-backward replay of sequentially memorized items in humans |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231774/ https://www.ncbi.nlm.nih.gov/pubmed/30334735 http://dx.doi.org/10.7554/eLife.35164 |
work_keys_str_mv | AT huangqiaoli fastbackwardreplayofsequentiallymemorizeditemsinhumans AT jiajianrong fastbackwardreplayofsequentiallymemorizeditemsinhumans AT hanqiming fastbackwardreplayofsequentiallymemorizeditemsinhumans AT luohuan fastbackwardreplayofsequentiallymemorizeditemsinhumans |