Cargando…

Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study

BACKGROUND: Objective behavioral markers of mental illness, often recorded through smartphones or wearable devices, have the potential to transform how mental health services are delivered and to help users monitor their own health. Linking objective markers to illness is commonly performed using po...

Descripción completa

Detalles Bibliográficos
Autores principales: Palmius, Niclas, Saunders, Kate E A, Carr, Oliver, Geddes, John R, Goodwin, Guy M, De Vos, Maarten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231780/
https://www.ncbi.nlm.nih.gov/pubmed/30348626
http://dx.doi.org/10.2196/10194
_version_ 1783370297175441408
author Palmius, Niclas
Saunders, Kate E A
Carr, Oliver
Geddes, John R
Goodwin, Guy M
De Vos, Maarten
author_facet Palmius, Niclas
Saunders, Kate E A
Carr, Oliver
Geddes, John R
Goodwin, Guy M
De Vos, Maarten
author_sort Palmius, Niclas
collection PubMed
description BACKGROUND: Objective behavioral markers of mental illness, often recorded through smartphones or wearable devices, have the potential to transform how mental health services are delivered and to help users monitor their own health. Linking objective markers to illness is commonly performed using population-level models, which assume that everyone is the same. The reality is that there are large levels of natural interindividual variability, both in terms of response to illness and in usual behavioral patterns, as well as intraindividual variability that these models do not consider. OBJECTIVE: The objective of this study was to demonstrate the utility of splitting the population into subsets of individuals that exhibit similar relationships between their objective markers and their mental states. Using these subsets, “group-personalized” models can be built for individuals based on other individuals to whom they are most similar. METHODS: We collected geolocation data from 59 participants who were part of the Automated Monitoring of Symptom Severity study at the University of Oxford. This was an observational data collection study. Participants were diagnosed with bipolar disorder (n=20); borderline personality disorder (n=17); or were healthy controls (n=22). Geolocation data were collected using a custom Android app installed on participants’ smartphones, and participants weekly reported their symptoms of depression using the 16-item quick inventory of depressive symptomatology questionnaire. Population-level models were built to estimate levels of depression using features derived from the geolocation data recorded from participants, and it was hypothesized that results could be improved by splitting individuals into subgroups with similar relationships between their behavioral features and depressive symptoms. We developed a new model using a Dirichlet process prior for splitting individuals into groups, with a Bayesian Lasso model in each group to link behavioral features with mental illness. The result is a model for each individual that incorporates information from other similar individuals to augment the limited training data available. RESULTS: The new group-personalized regression model showed a significant improvement over population-level models in predicting mental health severity (P<.001). Analysis of subgroups showed that different groups were characterized by different features derived from raw geolocation data. CONCLUSIONS: This study demonstrates the importance of handling interindividual variability when developing models of mental illness. Population-level models do not capture nuances in how different individuals respond to illness, and the group-personalized model demonstrates a potential way to overcome these limitations when estimating mental state from objective behavioral features.
format Online
Article
Text
id pubmed-6231780
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-62317802018-12-03 Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study Palmius, Niclas Saunders, Kate E A Carr, Oliver Geddes, John R Goodwin, Guy M De Vos, Maarten J Med Internet Res Original Paper BACKGROUND: Objective behavioral markers of mental illness, often recorded through smartphones or wearable devices, have the potential to transform how mental health services are delivered and to help users monitor their own health. Linking objective markers to illness is commonly performed using population-level models, which assume that everyone is the same. The reality is that there are large levels of natural interindividual variability, both in terms of response to illness and in usual behavioral patterns, as well as intraindividual variability that these models do not consider. OBJECTIVE: The objective of this study was to demonstrate the utility of splitting the population into subsets of individuals that exhibit similar relationships between their objective markers and their mental states. Using these subsets, “group-personalized” models can be built for individuals based on other individuals to whom they are most similar. METHODS: We collected geolocation data from 59 participants who were part of the Automated Monitoring of Symptom Severity study at the University of Oxford. This was an observational data collection study. Participants were diagnosed with bipolar disorder (n=20); borderline personality disorder (n=17); or were healthy controls (n=22). Geolocation data were collected using a custom Android app installed on participants’ smartphones, and participants weekly reported their symptoms of depression using the 16-item quick inventory of depressive symptomatology questionnaire. Population-level models were built to estimate levels of depression using features derived from the geolocation data recorded from participants, and it was hypothesized that results could be improved by splitting individuals into subgroups with similar relationships between their behavioral features and depressive symptoms. We developed a new model using a Dirichlet process prior for splitting individuals into groups, with a Bayesian Lasso model in each group to link behavioral features with mental illness. The result is a model for each individual that incorporates information from other similar individuals to augment the limited training data available. RESULTS: The new group-personalized regression model showed a significant improvement over population-level models in predicting mental health severity (P<.001). Analysis of subgroups showed that different groups were characterized by different features derived from raw geolocation data. CONCLUSIONS: This study demonstrates the importance of handling interindividual variability when developing models of mental illness. Population-level models do not capture nuances in how different individuals respond to illness, and the group-personalized model demonstrates a potential way to overcome these limitations when estimating mental state from objective behavioral features. JMIR Publications 2018-10-22 /pmc/articles/PMC6231780/ /pubmed/30348626 http://dx.doi.org/10.2196/10194 Text en ©Niclas Palmius, Kate E A Saunders, Oliver Carr, John R Geddes, Guy M Goodwin, Maarten De Vos. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.10.2018. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Palmius, Niclas
Saunders, Kate E A
Carr, Oliver
Geddes, John R
Goodwin, Guy M
De Vos, Maarten
Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title_full Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title_fullStr Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title_full_unstemmed Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title_short Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study
title_sort group-personalized regression models for predicting mental health scores from objective mobile phone data streams: observational study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231780/
https://www.ncbi.nlm.nih.gov/pubmed/30348626
http://dx.doi.org/10.2196/10194
work_keys_str_mv AT palmiusniclas grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy
AT saunderskateea grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy
AT carroliver grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy
AT geddesjohnr grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy
AT goodwinguym grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy
AT devosmaarten grouppersonalizedregressionmodelsforpredictingmentalhealthscoresfromobjectivemobilephonedatastreamsobservationalstudy