Cargando…

Evaluating the Carrot Rewards App, a Population-Level Incentive-Based Intervention Promoting Step Counts Across Two Canadian Provinces: Quasi-Experimental Study

BACKGROUND: The Carrot Rewards app was developed as part of an innovative public-private partnership to reward Canadians with loyalty points, exchangeable for retail goods, travel rewards, and groceries for engaging in healthy behaviors such as walking. OBJECTIVE: This study examined whether a multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, Marc, White, Lauren, Lau, Erica, Leahey, Tricia, Adams, Marc A, Faulkner, Guy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231836/
https://www.ncbi.nlm.nih.gov/pubmed/30148712
http://dx.doi.org/10.2196/mhealth.9912
Descripción
Sumario:BACKGROUND: The Carrot Rewards app was developed as part of an innovative public-private partnership to reward Canadians with loyalty points, exchangeable for retail goods, travel rewards, and groceries for engaging in healthy behaviors such as walking. OBJECTIVE: This study examined whether a multicomponent intervention including goal setting, graded tasks, biofeedback, and very small incentives tied to daily step goal achievement (assessed by built-in smartphone accelerometers) could increase physical activity in two Canadian provinces, British Columbia (BC) and Newfoundland and Labrador (NL). METHODS: This 12-week, quasi-experimental (single group pre-post) study included 78,882 participants; 44.39% (35,014/78,882) enrolled in the Carrot Rewards “Steps” walking program during the recruitment period (June 13–July 10, 2016). During the 2-week baseline (or “run-in”) period, we calculated participants’ mean steps per day. Thereafter, participants earned incentives in the form of loyalty points (worth Can $0.04 ) every day they reached their personalized daily step goal (ie, baseline mean+1000 steps=first daily step goal level). Participants earned additional points (Can $0.40) for meeting their step goal 10+ nonconsecutive times in a 14-day period (called a “Step Up Challenge”). Participants could earn up to Can $5.00 during the 12-week evaluation period. Upon meeting the 10-day contingency, participants could increase their daily goal by 500 steps, aiming to gradually increase the daily step number by 3000. Only participants with ≥5 valid days (days with step counts: 1000-40,000) during the baseline period were included in the analysis (n=32,229).The primary study outcome was mean steps per day (by week), analyzed using linear mixed-effects models. RESULTS: The mean age of 32,229 participants with valid baseline data was 33.7 (SD 11.6) years; 66.11% (21,306/32,229) were female. The mean daily step count at baseline was 6511.22. Over half of users (16,336/32,229, 50.69%) were categorized as “physically inactive,” accumulating <5000 daily steps at baseline. Results from mixed-effects models revealed statistically significant increases in mean daily step counts when comparing baseline with each study week (P<.001). Compared with baseline, participants walked 115.70 more steps (95% CI 74.59 to 156.81; P<.001) at study week 12. BC and NL users classified as “high engagers” (app engagement above sample median; 15,511/32,229, 48.13%) walked 738.70 (95% CI 673.81 to 803.54; P<.001) and 346.00 (95% CI 239.26 to 452.74; P<.001) more steps, respectively. Physically inactive, high engagers (7022/32,229, 21.08%) averaged an increase of 1224.66 steps per day (95% CI 1160.69 to 1288.63; P<.001). Effect sizes were modest. CONCLUSIONS: Providing very small but immediate rewards for personalized daily step goal achievement as part of a multicomponent intervention increased daily step counts on a population scale, especially for physically inactive individuals and individuals who engaged more with the walking program. Positive effects in both BC and NL provide evidence of replicability.