Cargando…

Connectivity as a Predictor of Responsiveness to Transcranial Direct Current Stimulation in People with Stroke: Protocol for a Double-Blind Randomized Controlled Trial

BACKGROUND: Stroke can have devastating consequences for an individual’s quality of life. Interventions capable of enhancing response to therapy would be highly valuable to the field of neurological rehabilitation. One approach is to use noninvasive brain stimulation techniques, such as transcranial...

Descripción completa

Detalles Bibliográficos
Autores principales: Welsby, Ellana, Ridding, Michael, Hillier, Susan, Hordacre, Brenton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231838/
https://www.ncbi.nlm.nih.gov/pubmed/30341044
http://dx.doi.org/10.2196/10848
Descripción
Sumario:BACKGROUND: Stroke can have devastating consequences for an individual’s quality of life. Interventions capable of enhancing response to therapy would be highly valuable to the field of neurological rehabilitation. One approach is to use noninvasive brain stimulation techniques, such as transcranial direct current stimulation, to induce a neuroplastic response. When delivered in combination with rehabilitation exercises, there is some evidence that transcranial direct current stimulation is beneficial. However, responses to stimulation are highly variable. Therefore biomarkers predictive of response to stimulation would be valuable to help select appropriate people for this potentially beneficial treatment. OBJECTIVE: The objective of this study is to investigate connectivity of the stimulation target, the ipsilesional motor cortex, as a biomarker predictive of response to anodal transcranial direct current stimulation in people with stroke. METHODS: This study is a double blind, randomized controlled trial (RCT), with two parallel groups. A total of 68 participants with first ever ischemic stroke with motor impairment will undertake a two week (14 session) treatment for upper limb function (Graded Repetitive Arm Supplementary Program; GRASP). Participants will be randomized 2:1 to active:sham treatment groups. Those in the active treatment group will receive anodal transcranial direct current stimulation to the ipsilesional motor cortex at the start of each GRASP session. Those allocated to the sham treatment group will receive sham transcranial direct current stimulation. Behavioural assessments of upper limb function will be performed at baseline, post treatment, 1 month follow-up and 3 months follow-up. Neurophysiological assessments will include magnetic resonance imaging (MRI), electroencephalography (EEG) and transcranial magnetic stimulation (TMS) and will be performed at baseline, post treatment, 1 month follow-up (EEG and TMS only) and 3 months follow-up (EEG and TMS only). RESULTS: Participants will be recruited between March 2018 and December 2018, with experimental testing concluding in March 2019. CONCLUSIONS: Identifying a biomarker predictive of response to transcranial direct current stimulation would greatly assist clinical utility of this novel treatment approach. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry ACTRN12618000443291; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12618000443291 (Archived by WebCite at http://www.webcitation.org/737QOXXxt) REGISTERED REPORT IDENTIFIER: RR1-10.2196/10848