Cargando…

Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention

BACKGROUND: Drug counterfeiting is a global problem with significant risks to consumers and the general public. In the Philippines, 30% of inspected drug stores in 2003 were found with substandard/spurious/falsely-labeled/falsified/counterfeit drugs. The economic burden on the population drug expend...

Descripción completa

Detalles Bibliográficos
Autores principales: Sylim, Patrick, Liu, Fang, Marcelo, Alvin, Fontelo, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231844/
https://www.ncbi.nlm.nih.gov/pubmed/30213780
http://dx.doi.org/10.2196/10163
_version_ 1783370312919810048
author Sylim, Patrick
Liu, Fang
Marcelo, Alvin
Fontelo, Paul
author_facet Sylim, Patrick
Liu, Fang
Marcelo, Alvin
Fontelo, Paul
author_sort Sylim, Patrick
collection PubMed
description BACKGROUND: Drug counterfeiting is a global problem with significant risks to consumers and the general public. In the Philippines, 30% of inspected drug stores in 2003 were found with substandard/spurious/falsely-labeled/falsified/counterfeit drugs. The economic burden on the population drug expenditures and on governments is high. The Philippine Food and Drug Administration (FDA) encourages the public to check the certificates of product registration and report any instances of counterfeiting. The National Police of Philippines responds to such reports through a special task force. However, no literature on its impact on the distribution of such drugs were found. Blockchain technology is a cryptographic ledger that is allegedly immutable through repeated sequential hashing and fault-tolerant through a consensus algorithm. This project will develop and test a pharmacosurveillance blockchain system that will support information sharing along the official drug distribution network. OBJECTIVE: This study aims to develop a pharmacosurveillance blockchain system and test its functions in a simulated network. METHODS: We are developing a Distributed Application (DApp) that will run on smart contracts, employing Swarm as the Distributed File System (DFS). Two instances will be developed: one for Ethereum and another for Hyperledger Fabric. The proof-of-work (PoW) consensus algorithm of Ethereum will be modified into a delegated proof-of-stake (DPoS) or practical Byzantine fault tolerance (PBFT) consensus algorithm as it is scalable and fits the drug supply chain environment. The system will adopt the GS1 pedigree standard and will satisfy the data points in the data standardization guidelines from the US FDA. Simulations will use the following 5 nodes: for FDA, manufacturer, wholesaler, retailer, and the consumer portal. RESULTS: Development is underway. The design of the system will place FDA in a supervisory data verification role, with each pedigree type–specific data source serving a primary data verification role. The supply chain process will be initiated by the manufacturer, with recursive verification for every transaction. It will allow consumers to scan a code printed on the receipt of their purchases to review the drug distribution history. CONCLUSIONS: Development and testing will be conducted in a simulated network, and thus, results may differ from actual practice. The project being proposed is disruptive; once tested, the team intends to engage the Philippine FDA to discuss implementation plans and formulate policies to facilitate adoption and sustainability. REGISTERED REPORT IDENTIFIER: RR1-10.2196/10163
format Online
Article
Text
id pubmed-6231844
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-62318442018-12-03 Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention Sylim, Patrick Liu, Fang Marcelo, Alvin Fontelo, Paul JMIR Res Protoc Proposal BACKGROUND: Drug counterfeiting is a global problem with significant risks to consumers and the general public. In the Philippines, 30% of inspected drug stores in 2003 were found with substandard/spurious/falsely-labeled/falsified/counterfeit drugs. The economic burden on the population drug expenditures and on governments is high. The Philippine Food and Drug Administration (FDA) encourages the public to check the certificates of product registration and report any instances of counterfeiting. The National Police of Philippines responds to such reports through a special task force. However, no literature on its impact on the distribution of such drugs were found. Blockchain technology is a cryptographic ledger that is allegedly immutable through repeated sequential hashing and fault-tolerant through a consensus algorithm. This project will develop and test a pharmacosurveillance blockchain system that will support information sharing along the official drug distribution network. OBJECTIVE: This study aims to develop a pharmacosurveillance blockchain system and test its functions in a simulated network. METHODS: We are developing a Distributed Application (DApp) that will run on smart contracts, employing Swarm as the Distributed File System (DFS). Two instances will be developed: one for Ethereum and another for Hyperledger Fabric. The proof-of-work (PoW) consensus algorithm of Ethereum will be modified into a delegated proof-of-stake (DPoS) or practical Byzantine fault tolerance (PBFT) consensus algorithm as it is scalable and fits the drug supply chain environment. The system will adopt the GS1 pedigree standard and will satisfy the data points in the data standardization guidelines from the US FDA. Simulations will use the following 5 nodes: for FDA, manufacturer, wholesaler, retailer, and the consumer portal. RESULTS: Development is underway. The design of the system will place FDA in a supervisory data verification role, with each pedigree type–specific data source serving a primary data verification role. The supply chain process will be initiated by the manufacturer, with recursive verification for every transaction. It will allow consumers to scan a code printed on the receipt of their purchases to review the drug distribution history. CONCLUSIONS: Development and testing will be conducted in a simulated network, and thus, results may differ from actual practice. The project being proposed is disruptive; once tested, the team intends to engage the Philippine FDA to discuss implementation plans and formulate policies to facilitate adoption and sustainability. REGISTERED REPORT IDENTIFIER: RR1-10.2196/10163 JMIR Publications 2018-09-13 /pmc/articles/PMC6231844/ /pubmed/30213780 http://dx.doi.org/10.2196/10163 Text en ©Patrick Sylim, Fang Liu, Alvin Marcelo, Paul Fontelo. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 13.09.2018. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.
spellingShingle Proposal
Sylim, Patrick
Liu, Fang
Marcelo, Alvin
Fontelo, Paul
Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title_full Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title_fullStr Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title_full_unstemmed Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title_short Blockchain Technology for Detecting Falsified and Substandard Drugs in Distribution: Pharmaceutical Supply Chain Intervention
title_sort blockchain technology for detecting falsified and substandard drugs in distribution: pharmaceutical supply chain intervention
topic Proposal
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231844/
https://www.ncbi.nlm.nih.gov/pubmed/30213780
http://dx.doi.org/10.2196/10163
work_keys_str_mv AT sylimpatrick blockchaintechnologyfordetectingfalsifiedandsubstandarddrugsindistributionpharmaceuticalsupplychainintervention
AT liufang blockchaintechnologyfordetectingfalsifiedandsubstandarddrugsindistributionpharmaceuticalsupplychainintervention
AT marceloalvin blockchaintechnologyfordetectingfalsifiedandsubstandarddrugsindistributionpharmaceuticalsupplychainintervention
AT fontelopaul blockchaintechnologyfordetectingfalsifiedandsubstandarddrugsindistributionpharmaceuticalsupplychainintervention