Cargando…
Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study
BACKGROUND: The recent rise in popularity and scale of social networking services (SNSs) has resulted in an increasing need for SNS-based information extraction systems. A popular application of SNS data is health surveillance for predicting an outbreak of epidemics by detecting diseases from text m...
Autores principales: | Wakamiya, Shoko, Kawai, Yukiko, Aramaki, Eiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231889/ https://www.ncbi.nlm.nih.gov/pubmed/30274968 http://dx.doi.org/10.2196/publichealth.8627 |
Ejemplares similares
-
Tweet Classification Toward Twitter-Based Disease Surveillance: New Data, Methods, and Evaluations
por: Wakamiya, Shoko, et al.
Publicado: (2019) -
Modeling the spread of fake news on Twitter
por: Murayama, Taichi, et al.
Publicado: (2021) -
Causal Relationships Among Pollen Counts, Tweet Numbers, and Patient Numbers for Seasonal Allergic Rhinitis Surveillance: Retrospective Analysis
por: Wakamiya, Shoko, et al.
Publicado: (2019) -
Monitoring Mentions of COVID-19 Vaccine Side Effects on Japanese and Indonesian Twitter: Infodemiological Study
por: Ferawati, Kiki, et al.
Publicado: (2022) -
Exploring Relationships Between Tweet Numbers and Over-the-counter Drug Sales for Allergic Rhinitis: Retrospective Analysis
por: Wakamiya, Shoko, et al.
Publicado: (2022)