Cargando…

Acute alcohol administration dampens central extended amygdala reactivity

Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)—plays a key role in prominent neuroscientific models of alcohol d...

Descripción completa

Detalles Bibliográficos
Autores principales: Hur, Juyoen, Kaplan, Claire M., Smith, Jason F., Bradford, Daniel E., Fox, Andrew S., Curtin, John J., Shackman, Alexander J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232084/
https://www.ncbi.nlm.nih.gov/pubmed/30420682
http://dx.doi.org/10.1038/s41598-018-34987-3
Descripción
Sumario:Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)—plays a key role in prominent neuroscientific models of alcohol drinking, but the relevance of these regions to acute alcohol consumption in humans remains poorly understood. Using a single-blind, randomized-groups design, multiband fMRI data were acquired from 49 social drinkers while they performed a well-established emotional faces paradigm after consuming either alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from unbiased, anatomically predefined regions of interest. Analyses revealed similar levels of dampening in the BST and Ce. In short, alcohol transiently reduces reactivity to emotional faces and it does so similarly across the two major divisions of the human EAc. These observations reinforce the translational relevance of addiction models derived from preclinical work in rodents and provide new insights into the neural systems most relevant to the consumption of alcohol and to the initial development of alcohol abuse in humans.