Cargando…
Higher-Order Interactions in Quantum Optomechanics: Analysis of Quadratic Terms
This article presents a full operator analytical method for studying the quadratic nonlinear interactions in quantum optomechanics. The method is based on the application of higher-order operators, using a six-dimensional basis of second order operators which constitute an exactly closed commutators...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232100/ https://www.ncbi.nlm.nih.gov/pubmed/30420681 http://dx.doi.org/10.1038/s41598-018-35055-6 |
Sumario: | This article presents a full operator analytical method for studying the quadratic nonlinear interactions in quantum optomechanics. The method is based on the application of higher-order operators, using a six-dimensional basis of second order operators which constitute an exactly closed commutators. We consider both types of standard position-field and the recently predicted non-standard momentum-field quadratic interactions, which is significant when the ratio of mechanical frequency to optical frequency is not negligible. This unexplored regime of large mechanical frequency can be investigated in few platforms including the superconducting electromechanics and simulating quantum cavity electrodynamic circuits. It has been shown that the existence of non-standard quadratic interaction could be observable under appropriate conditions. |
---|